問題文全文(内容文):
複素数平面上の$3$点$α,β,γ$が正三角形になるための必要十分条件は$α^2+β^2+γ^2=αβ+βγ+γα$であることを証明して下さい。
複素数平面上の$3$点$α,β,γ$が正三角形になるための必要十分条件は$α^2+β^2+γ^2=αβ+βγ+γα$であることを証明して下さい。
単元:
#複素数平面#複素数平面#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
複素数平面上の$3$点$α,β,γ$が正三角形になるための必要十分条件は$α^2+β^2+γ^2=αβ+βγ+γα$であることを証明して下さい。
複素数平面上の$3$点$α,β,γ$が正三角形になるための必要十分条件は$α^2+β^2+γ^2=αβ+βγ+γα$であることを証明して下さい。
投稿日:2024.09.22





