問題文全文(内容文):
$\boxed{1}$
$a$を正の実数とする。
座標平面において、
放物線$C:y=x^2$上の点$P(a,a^2)$に
おける$C$の接線と直交し、$P$を通る直線を$\ell$とおく。
$\ell$と$C$の交点のうち、$P$と異なる点を$Q$と置く。
(1)$Q$の$x$座標を求めよ。
$Q$における$C$の接線と直交し、$Q$を通る直線を$m$とおく。
$m$と$C$の交点のうち、$Q$と異なる点を$R$とおく。
(2)$a$がすべての正の実数を動くとき、
$R$の$x$座標の最小値を求めよ。
$2025$年東京大学文系過去問題
$\boxed{1}$
$a$を正の実数とする。
座標平面において、
放物線$C:y=x^2$上の点$P(a,a^2)$に
おける$C$の接線と直交し、$P$を通る直線を$\ell$とおく。
$\ell$と$C$の交点のうち、$P$と異なる点を$Q$と置く。
(1)$Q$の$x$座標を求めよ。
$Q$における$C$の接線と直交し、$Q$を通る直線を$m$とおく。
$m$と$C$の交点のうち、$Q$と異なる点を$R$とおく。
(2)$a$がすべての正の実数を動くとき、
$R$の$x$座標の最小値を求めよ。
$2025$年東京大学文系過去問題
単元:
#大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
$a$を正の実数とする。
座標平面において、
放物線$C:y=x^2$上の点$P(a,a^2)$に
おける$C$の接線と直交し、$P$を通る直線を$\ell$とおく。
$\ell$と$C$の交点のうち、$P$と異なる点を$Q$と置く。
(1)$Q$の$x$座標を求めよ。
$Q$における$C$の接線と直交し、$Q$を通る直線を$m$とおく。
$m$と$C$の交点のうち、$Q$と異なる点を$R$とおく。
(2)$a$がすべての正の実数を動くとき、
$R$の$x$座標の最小値を求めよ。
$2025$年東京大学文系過去問題
$\boxed{1}$
$a$を正の実数とする。
座標平面において、
放物線$C:y=x^2$上の点$P(a,a^2)$に
おける$C$の接線と直交し、$P$を通る直線を$\ell$とおく。
$\ell$と$C$の交点のうち、$P$と異なる点を$Q$と置く。
(1)$Q$の$x$座標を求めよ。
$Q$における$C$の接線と直交し、$Q$を通る直線を$m$とおく。
$m$と$C$の交点のうち、$Q$と異なる点を$R$とおく。
(2)$a$がすべての正の実数を動くとき、
$R$の$x$座標の最小値を求めよ。
$2025$年東京大学文系過去問題
投稿日:2025.03.03





