問題文全文(内容文):
$\boxed{1}$
(4)関数$y=(2\sin 2x+\sin x)+\sin x (0\leqq x \lt 2\pi)$は、
$x=\boxed{オ}$のとき最大値$\boxed{カ}$をとる。
$2025$年慶應義塾大学看護医療学部過去問題
$\boxed{1}$
(4)関数$y=(2\sin 2x+\sin x)+\sin x (0\leqq x \lt 2\pi)$は、
$x=\boxed{オ}$のとき最大値$\boxed{カ}$をとる。
$2025$年慶應義塾大学看護医療学部過去問題
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(4)関数$y=(2\sin 2x+\sin x)+\sin x (0\leqq x \lt 2\pi)$は、
$x=\boxed{オ}$のとき最大値$\boxed{カ}$をとる。
$2025$年慶應義塾大学看護医療学部過去問題
$\boxed{1}$
(4)関数$y=(2\sin 2x+\sin x)+\sin x (0\leqq x \lt 2\pi)$は、
$x=\boxed{オ}$のとき最大値$\boxed{カ}$をとる。
$2025$年慶應義塾大学看護医療学部過去問題
投稿日:2025.04.28





