問題文全文(内容文):
$\boxed{4}$
$p$を正の実数、$m$を自然数とし、
曲線$y=-x^2$上の点$(-p,-p^2)$における
接線と直線$y=2m$の交点を$P_m$とする。
$P_m$の$x$座標が$1$以下となる$m$の最大値を
$N$とする。
(1)$P_m$の$x$座標を、$p$と$m$を用いて表せ。
(2)$N=40$が成り立つ$p$の範囲を求めよ。
以下、$n$を自然数とし、
$a=3n\log_3 6-\log_2+n$とする。
(3)$3^a$は$2$以上の自然数である。
$3^a$の素因数分解を、$n$を用いて書け。
(4)$p=3^a$のとき、$N\lt 2^{1000}$となる
自然数$n$の最大値を求めよ。
なお、必要があれば$1.58 \lt \log_2 3 \lt 1.50$を用いよ。
$2025$年慶應義塾大学経済学部過去問題
$\boxed{4}$
$p$を正の実数、$m$を自然数とし、
曲線$y=-x^2$上の点$(-p,-p^2)$における
接線と直線$y=2m$の交点を$P_m$とする。
$P_m$の$x$座標が$1$以下となる$m$の最大値を
$N$とする。
(1)$P_m$の$x$座標を、$p$と$m$を用いて表せ。
(2)$N=40$が成り立つ$p$の範囲を求めよ。
以下、$n$を自然数とし、
$a=3n\log_3 6-\log_2+n$とする。
(3)$3^a$は$2$以上の自然数である。
$3^a$の素因数分解を、$n$を用いて書け。
(4)$p=3^a$のとき、$N\lt 2^{1000}$となる
自然数$n$の最大値を求めよ。
なお、必要があれば$1.58 \lt \log_2 3 \lt 1.50$を用いよ。
$2025$年慶應義塾大学経済学部過去問題
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
$p$を正の実数、$m$を自然数とし、
曲線$y=-x^2$上の点$(-p,-p^2)$における
接線と直線$y=2m$の交点を$P_m$とする。
$P_m$の$x$座標が$1$以下となる$m$の最大値を
$N$とする。
(1)$P_m$の$x$座標を、$p$と$m$を用いて表せ。
(2)$N=40$が成り立つ$p$の範囲を求めよ。
以下、$n$を自然数とし、
$a=3n\log_3 6-\log_2+n$とする。
(3)$3^a$は$2$以上の自然数である。
$3^a$の素因数分解を、$n$を用いて書け。
(4)$p=3^a$のとき、$N\lt 2^{1000}$となる
自然数$n$の最大値を求めよ。
なお、必要があれば$1.58 \lt \log_2 3 \lt 1.50$を用いよ。
$2025$年慶應義塾大学経済学部過去問題
$\boxed{4}$
$p$を正の実数、$m$を自然数とし、
曲線$y=-x^2$上の点$(-p,-p^2)$における
接線と直線$y=2m$の交点を$P_m$とする。
$P_m$の$x$座標が$1$以下となる$m$の最大値を
$N$とする。
(1)$P_m$の$x$座標を、$p$と$m$を用いて表せ。
(2)$N=40$が成り立つ$p$の範囲を求めよ。
以下、$n$を自然数とし、
$a=3n\log_3 6-\log_2+n$とする。
(3)$3^a$は$2$以上の自然数である。
$3^a$の素因数分解を、$n$を用いて書け。
(4)$p=3^a$のとき、$N\lt 2^{1000}$となる
自然数$n$の最大値を求めよ。
なお、必要があれば$1.58 \lt \log_2 3 \lt 1.50$を用いよ。
$2025$年慶應義塾大学経済学部過去問題
投稿日:2025.05.23





