福田のおもしろ数学555〜連立方程式に解が存在するかどうかの検証 - 質問解決D.B.(データベース)

福田のおもしろ数学555〜連立方程式に解が存在するかどうかの検証

問題文全文(内容文):

$a,b,c$は異なる実数であり

連立方程式

$\begin{eqnarray}
\left\{
\begin{array}{l}
ax=b \\
bx=c \\\
cx=a
\end{array}
\right.
\end{eqnarray}$

が解をもつような$(a,b,c)$は存在するか。
    
単元: #連立方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$a,b,c$は異なる実数であり

連立方程式

$\begin{eqnarray}
\left\{
\begin{array}{l}
ax=b \\
bx=c \\\
cx=a
\end{array}
\right.
\end{eqnarray}$

が解をもつような$(a,b,c)$は存在するか。
    
投稿日:2025.07.10

<関連動画>

ビッグマックに連立方程式当てはめてみた

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ビッグマックに連立方程式当てはめてみた
この動画を見る 

【分数…同じ部分…!】連立方程式:日本大学第三高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{2x+4}{3}+\dfrac{y+1}{2}=1 \\
2x+4-\dfrac{y+1}{6}=-\dfrac{1}{3}
\end{array}
\right.
\end{eqnarray}$
を解きなさい.

日大第三高校過去問
この動画を見る 

【高校受験対策】数学-死守6

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#比例・反比例#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の計算をしなさい.

①$5-7$

②$- 6 + 9 \div \dfrac{1}{4}$

③$3\sqrt2\times \sqrt8$

④$2(2a-3b)+(a-5b)$

2.次の問いに答えなさい.

⑤右の図1のように,線分$AB$を直径とする円があります.
円の中心$O$を定規とコンパスを使って作図しなさい.
ただし,点を示す記号$O$をかき入れ,作図に用いた線は消さないこと.

⑥右の図2のような反比例の関係$y =\dfrac{a}{x}$のグラフがあります.
点$O$は原点とします.$a$の値を求めなさい.

⑦連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x + y = 5 \\
y=4x-1
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑧二次方程式$x^2+5x+1=0$を解きなさい.

図は動画内を参照
この動画を見る 

【高校受験対策/数学】文章題8

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・文章題8

Q.
ある博物館の入館料は、小学生260円、中学生と高校生はともに410円、大人760円である。
ある日の入館者数を調べると、中学生と高校生の合計入館者数は小学生の入館者数の2倍であり、
大人の入館者数は小学生、中学生、高校生の合計入館者数よりも100人少なかった。
この日の小学生の入館者数を$x$人、大人の入館者数を$y$人とするとき、次の問いに答えよ。

①この日の総入館者数を$x$と$y$の両方を用いて表せ。

②さらに、この博物館では1個550円のおみやげを売っており、総入館者数の8割の人が購入した。
この日の総入館者の入館料の合計とおみやげの売上げをあわせた金額は150000円で、おみやげを2個以上買った人はいなかった。
このとき$x$と$y$の値をそれぞれ求めよ。
この動画を見る 

連立方程式が4つの解を持つ条件

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2+y^2-4(a+1)x-2ay+5a^2+
 8a+3=0 \\
x^2=y^2
\end{array}
\right.
\end{eqnarray}$
が4つの解をもつ$a$を求めよ.
この動画を見る 
PAGE TOP