問題文全文(内容文):
初項と第 $2$ 項がそれぞれ $a_1=1,a_2=1$ であり数列 $\{a_n\}$ は、 $n \geqq 2$ のとき等式
$$a_{n+1}=a_1+a_2+ \cdots + a_n$$
を満たす。 $n \geqq 3$ のとき $a_n$ を $n$ を用いて表すと、 $a_n = \fbox{ク}$ である。
初項と第 $2$ 項がそれぞれ $a_1=1,a_2=1$ であり数列 $\{a_n\}$ は、 $n \geqq 2$ のとき等式
$$a_{n+1}=a_1+a_2+ \cdots + a_n$$
を満たす。 $n \geqq 3$ のとき $a_n$ を $n$ を用いて表すと、 $a_n = \fbox{ク}$ である。
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
初項と第 $2$ 項がそれぞれ $a_1=1,a_2=1$ であり数列 $\{a_n\}$ は、 $n \geqq 2$ のとき等式
$$a_{n+1}=a_1+a_2+ \cdots + a_n$$
を満たす。 $n \geqq 3$ のとき $a_n$ を $n$ を用いて表すと、 $a_n = \fbox{ク}$ である。
初項と第 $2$ 項がそれぞれ $a_1=1,a_2=1$ であり数列 $\{a_n\}$ は、 $n \geqq 2$ のとき等式
$$a_{n+1}=a_1+a_2+ \cdots + a_n$$
を満たす。 $n \geqq 3$ のとき $a_n$ を $n$ を用いて表すと、 $a_n = \fbox{ク}$ である。
投稿日:2024.07.16





