問題文全文(内容文):
$1\leqq x\leqq 8$の範囲において、関数$y=(\log_{2} x)^2-8\log_{2} x-20$は$x=\fbox{ア}$のときに最小値$\fbox{イ}$をとる。
$1\leqq x\leqq 8$の範囲において、関数$y=(\log_{2} x)^2-8\log_{2} x-20$は$x=\fbox{ア}$のときに最小値$\fbox{イ}$をとる。
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$1\leqq x\leqq 8$の範囲において、関数$y=(\log_{2} x)^2-8\log_{2} x-20$は$x=\fbox{ア}$のときに最小値$\fbox{イ}$をとる。
$1\leqq x\leqq 8$の範囲において、関数$y=(\log_{2} x)^2-8\log_{2} x-20$は$x=\fbox{ア}$のときに最小値$\fbox{イ}$をとる。
投稿日:2024.07.12





