福田のおもしろ数学187〜直円錐を平面で切った切り口の面積 - 質問解決D.B.(データベース)

福田のおもしろ数学187〜直円錐を平面で切った切り口の面積

問題文全文(内容文):
底辺の半径1、高さ1の直円錐を図のような平面で切ったとき断面積はいくら?
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
底辺の半径1、高さ1の直円錐を図のような平面で切ったとき断面積はいくら?
投稿日:2024.07.07

<関連動画>

13愛知県教員採用試験(数学:5番 微積)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
5⃣ $F(x)=\int_{\pi - x}^{\pi + x} t sint dt$
$(0 \leqq x \leqq 2\pi)$
F(x)の最小値を求めよ。
この動画を見る 

#前橋工科大学2024#定積分_13#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} \displaystyle \frac{1}{2}(1-\cos x)^2 dx$

出典:2024年前橋工科大学
この動画を見る 

大学入試問題#360「もっとスマートな解答がありそう・・・」 宮崎大学2014 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{x^3+3x^2}{x^2+3x+2}dx$

出典:2014年宮崎大学
この動画を見る 

大学入試問題#540「これは平均点の調整すらならないような」 京都大学(2023) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{4} \sqrt{ x }\ log(x^2)\ dx$

出典:2023年京都大学 入試問題
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試理系第1問(1)〜面積計算

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(1)曲線$y=1+\sin^2 x$と$x$軸、$y$軸、
および直線$x=\pi$で囲まれた図形の面積は
$\frac{\boxed{ア}}{\boxed{イ}}\ \pi$となる。

2022明治大学全統理系過去問
この動画を見る 
PAGE TOP