【数Ⅲ】複素数平面:複素数で表された方程式が示す図形とは? - 質問解決D.B.(データベース)

【数Ⅲ】複素数平面:複素数で表された方程式が示す図形とは?

問題文全文(内容文):
次の方程式を満たす点Z全体が表す図形を答えよ。

(1)$\vert \bar{z} - i \vert = 1$
(2)$\vert z - 3 + i\vert = \vert z + 1\vert $
(3)$\vert z - i\vert =2\vert z - 1\vert$
チャプター:

00:00 オープニング
00:21 複素数平面の教科書内容の復習
02:00 解答解説

単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の方程式を満たす点Z全体が表す図形を答えよ。

(1)$\vert \bar{z} - i \vert = 1$
(2)$\vert z - 3 + i\vert = \vert z + 1\vert $
(3)$\vert z - i\vert =2\vert z - 1\vert$
投稿日:2023.06.01

<関連動画>

福田の一夜漬け数学〜数学III 複素数平面〜点の軌跡(1)

アイキャッチ画像
単元: #数Ⅱ#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
点zが次の方程式を満たすとき、点zはどのような図形を描くか。
(1)$|z-1|=|z+i|$
(2)$|2z-1-i|=4$
(3)$|2\bar{z}-1+i|=4$
(4)|$z+2|=2|z-1|$
この動画を見る 

【数C】【複素数平面】複素数と図形1 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形の各辺の中点が$\alpha=-1+i,\beta=1+2i,\gamma=2$であるとき、この三角形の3つの頂点を表す複素数を求めよ。
この動画を見る 

福田の数学〜筑波大学2023年理系第6問〜複素数平面上の点の軌跡とアポロニウスの円

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ $i$を虚数単位とする。複素数平面に関する以下の問いに答えよ。
(1)等式|$z$+2|=2|$z$-1| を満たす点$z$の全体が表す図形は円であることを示し、その中心と半径を求めよ。
(2)等式
$\left\{|z+2|-2|z-1|\right\}$$|z+6i|$=$3\left\{|z+2|-2|z-1|\right\}$$|z-2i|$
を満たす点$z$の全体が表す図形をSとする。このときSを複素数平面上に図示せよ。
(3)点$z$が(2)における図形S上を動くとき、$w$=$\frac{1}{z}$ で定義される点$w$が描く図形を複素数平面上に図示せよ。

2023筑波大学理系過去問
この動画を見る 

慈恵医大 複素数の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
(1)$\alpha^7,\displaystyle \sum_{k=0}^6 {\alpha}_{k}$の値を求めよ.

(2)$\beta=\alpha^3+\alpha^5+\alpha^6$とするとき,$\beta+\bar{\beta},\beta\bar{\beta}$の値を求めよ.

(3)$\beta=a+bi,b$の正負を判定し$a,b$の値を求めよ.

慈恵医大過去問
この動画を見る 

福田のおもしろ数学197〜正五角形の辺、対角線の積の値

アイキャッチ画像
単元: #数Ⅰ#複素数平面#図形と計量#三角比への応用(正弦・余弦・面積)#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
半径$1$の円に内接する正五角形$\mathrm{ABCDE}$について$\mathrm{AB}\cdot\mathrm{AC}\cdot\mathrm{AD}\cdot\mathrm{AE}$を求めよ。
この動画を見る 
PAGE TOP