図形への応用
頭の体操に 四天王寺
単元:
#複素数平面#図形への応用#数学(高校生)#数C
指導講師:
数学を数楽に
問題文全文(内容文):
$S-T=3\,\rm{cm}^2$
$AP=?$
*図は動画内参照
四天王寺高等学校
この動画を見る
$S-T=3\,\rm{cm}^2$
$AP=?$
*図は動画内参照
四天王寺高等学校
福田の数学〜東京大学2018年理系第5問〜複素数平面上の点の軌跡
単元:
#大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
複素数平面上の原点を中心とする半径 1 の円を C とする。
点 P(z) は C 上にあり、点 A(I) とは異なるとする。
点 P における円 C の接線に関して、点 A と対称な点を Q(u) とする。
$\omega=\displaystyle \frac{1}{1-u}$とおき$\omega$と共役な複素数を$\overline{ \omega }$で表す。
(1)uと$\displaystyle \frac{\overline{ \omega }}{\omega}$をzについての整数として表し、絶対値の値$\displaystyle \frac{\vert \omega+\overline{ \omega }-1 \vert}{\vert \omega \vert}$を求めよ。
(2)Cのうち実部が$\frac{1}{2}$以下の複素数平面で表される部分をCとする。点P(z)がC’上を動くときの点R($\omega$)の軌跡を求めよ。
$\omega=x+yi$(x,yは実数)とおく。
2018東大理系過去問
この動画を見る
複素数平面上の原点を中心とする半径 1 の円を C とする。
点 P(z) は C 上にあり、点 A(I) とは異なるとする。
点 P における円 C の接線に関して、点 A と対称な点を Q(u) とする。
$\omega=\displaystyle \frac{1}{1-u}$とおき$\omega$と共役な複素数を$\overline{ \omega }$で表す。
(1)uと$\displaystyle \frac{\overline{ \omega }}{\omega}$をzについての整数として表し、絶対値の値$\displaystyle \frac{\vert \omega+\overline{ \omega }-1 \vert}{\vert \omega \vert}$を求めよ。
(2)Cのうち実部が$\frac{1}{2}$以下の複素数平面で表される部分をCとする。点P(z)がC’上を動くときの点R($\omega$)の軌跡を求めよ。
$\omega=x+yi$(x,yは実数)とおく。
2018東大理系過去問
数学どうにかしたい人へ
単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る
数学が共通テストのみの人の勉強法紹介動画です
自治医大 三次方程式の解
単元:
#数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#図形への応用#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
2023自治医科大学過去問題
kは実数
$x^3-6x^2+kx-7 = 0$
の3つの解は複素数平面で1辺の長さが$\sqrt{3}$の正三角形の頂点となる
kの値
この動画を見る
2023自治医科大学過去問題
kは実数
$x^3-6x^2+kx-7 = 0$
の3つの解は複素数平面で1辺の長さが$\sqrt{3}$の正三角形の頂点となる
kの値
福田の数学〜筑波大学2023年理系第6問〜複素数平面上の点の軌跡とアポロニウスの円
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ $i$を虚数単位とする。複素数平面に関する以下の問いに答えよ。
(1)等式|$z$+2|=2|$z$-1| を満たす点$z$の全体が表す図形は円であることを示し、その中心と半径を求めよ。
(2)等式
$\left\{|z+2|-2|z-1|\right\}$$|z+6i|$=$3\left\{|z+2|-2|z-1|\right\}$$|z-2i|$
を満たす点$z$の全体が表す図形をSとする。このときSを複素数平面上に図示せよ。
(3)点$z$が(2)における図形S上を動くとき、$w$=$\frac{1}{z}$ で定義される点$w$が描く図形を複素数平面上に図示せよ。
2023筑波大学理系過去問
この動画を見る
$\Large\boxed{6}$ $i$を虚数単位とする。複素数平面に関する以下の問いに答えよ。
(1)等式|$z$+2|=2|$z$-1| を満たす点$z$の全体が表す図形は円であることを示し、その中心と半径を求めよ。
(2)等式
$\left\{|z+2|-2|z-1|\right\}$$|z+6i|$=$3\left\{|z+2|-2|z-1|\right\}$$|z-2i|$
を満たす点$z$の全体が表す図形をSとする。このときSを複素数平面上に図示せよ。
(3)点$z$が(2)における図形S上を動くとき、$w$=$\frac{1}{z}$ で定義される点$w$が描く図形を複素数平面上に図示せよ。
2023筑波大学理系過去問
【数Ⅲ】複素数平面:複素数で表された方程式が示す図形とは?
単元:
#複素数平面#図形への応用#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の方程式を満たす点Z全体が表す図形を答えよ。
(1)$\vert \bar{z} - i \vert = 1$
(2)$\vert z - 3 + i\vert = \vert z + 1\vert $
(3)$\vert z - i\vert =2\vert z - 1\vert$
この動画を見る
次の方程式を満たす点Z全体が表す図形を答えよ。
(1)$\vert \bar{z} - i \vert = 1$
(2)$\vert z - 3 + i\vert = \vert z + 1\vert $
(3)$\vert z - i\vert =2\vert z - 1\vert$
産業医科大 三角比の計算
単元:
#数Ⅰ#大学入試過去問(数学)#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#産業医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\cos\dfrac{2}{7}\pi+\cos\dfrac{4}{7}\pi+\cos\dfrac{8}{7}\pi=?$
$\sin\dfrac{2}{7}\pi+\sin\dfrac{4}{7}\pi+\sin\dfrac{8}{7}\pi=?$
これらを求めよ。
産業医科大過去問
この動画を見る
$\cos\dfrac{2}{7}\pi+\cos\dfrac{4}{7}\pi+\cos\dfrac{8}{7}\pi=?$
$\sin\dfrac{2}{7}\pi+\sin\dfrac{4}{7}\pi+\sin\dfrac{8}{7}\pi=?$
これらを求めよ。
産業医科大過去問
福田の数学〜慶應義塾大学2023年医学部第4問PART1〜円に内接する円の性質
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#複素数平面#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#微分とその応用#複素数平面#図形への応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標平面において原点Oを中心とする半径1の円を$C_1$とし、$C_1$の内部にある第1象限の点Pの極座標を(r, θ)とする。さらに点Pを中心とする円$C_2$が$C_1$上の点Qにおいて$C_1$に内接し、x軸上の点Rにおいてx軸に接しているとする。
また、極座標が(1, π)である$C_1$上の点をAとし、直線AQのy切片をtとする。
(1)rをθの式で表すとr=$\boxed{\ \ あ\ \ }$となり、tの式で表すとr=$\boxed{\ \ い\ \ }$となる。
(2)円$C_2$と同じ半径をもち、x軸に関して円$C_2$と対称な位置にある円$C'_2$の中心P'とする。三角形POP'の面積はθ=$\boxed{\ \ う\ \ }$のとき最大値$\boxed{\ \ え\ \ }$をとる。θ=$\boxed{\ \ う\ \ }$は条件t=$\boxed{\ \ お\ \ }$と同値である。
(3)円$C_1$に内接し、円$C_2$と$C'_2$の両方に外接する円のうち大きい方を$C_3$とする。円$C_3$の半径bをtの式で表すとb=$\boxed{\ \ か\ \ }$となる。
(4)3つの円$C_2$, $C'_2$, $C_3$の周の長さの和はθ=$\boxed{\ \ き\ \ }$の最大値$\boxed{\ \ く\ \ }$をとる。
2023慶應義塾大学看護医療学部過去問
この動画を見る
$\Large\boxed{4}$ 座標平面において原点Oを中心とする半径1の円を$C_1$とし、$C_1$の内部にある第1象限の点Pの極座標を(r, θ)とする。さらに点Pを中心とする円$C_2$が$C_1$上の点Qにおいて$C_1$に内接し、x軸上の点Rにおいてx軸に接しているとする。
また、極座標が(1, π)である$C_1$上の点をAとし、直線AQのy切片をtとする。
(1)rをθの式で表すとr=$\boxed{\ \ あ\ \ }$となり、tの式で表すとr=$\boxed{\ \ い\ \ }$となる。
(2)円$C_2$と同じ半径をもち、x軸に関して円$C_2$と対称な位置にある円$C'_2$の中心P'とする。三角形POP'の面積はθ=$\boxed{\ \ う\ \ }$のとき最大値$\boxed{\ \ え\ \ }$をとる。θ=$\boxed{\ \ う\ \ }$は条件t=$\boxed{\ \ お\ \ }$と同値である。
(3)円$C_1$に内接し、円$C_2$と$C'_2$の両方に外接する円のうち大きい方を$C_3$とする。円$C_3$の半径bをtの式で表すとb=$\boxed{\ \ か\ \ }$となる。
(4)3つの円$C_2$, $C'_2$, $C_3$の周の長さの和はθ=$\boxed{\ \ き\ \ }$の最大値$\boxed{\ \ く\ \ }$をとる。
2023慶應義塾大学看護医療学部過去問
福田の数学〜早稲田大学2023年理工学部第4問〜複素数平面上の点の軌跡
単元:
#大学入試過去問(数学)#複素数平面#微分とその応用#複素数平面#図形への応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 複素数平面上に2点A(1), B($\sqrt 3 i$)がある。ただし、$i$は虚数単位である。
複素数zに対し$w$=$\frac{3}{z}$で表される点$w$を考える。以下の問いに答えよ。
(1)z=1, $\frac{1+\sqrt 3i}{2}$, $\sqrt 3 i$のときのwをそれぞれ計算せよ。
(2)実数tに対し、z=(1-t)+t$\sqrt 3 i$とする。$\alpha$=$\frac{3-\sqrt 3 i}{2}$について、$\alpha z$の実部を求め、さらに($w-\alpha$)($\bar{w-\alpha}$)を求めよ。
(3)wと原点を結んでできる線分Lを考える。zが線分AB上を動くとき、線分Lが通過する範囲を図示し、その面積を求めよ。
この動画を見る
$\Large\boxed{4}$ 複素数平面上に2点A(1), B($\sqrt 3 i$)がある。ただし、$i$は虚数単位である。
複素数zに対し$w$=$\frac{3}{z}$で表される点$w$を考える。以下の問いに答えよ。
(1)z=1, $\frac{1+\sqrt 3i}{2}$, $\sqrt 3 i$のときのwをそれぞれ計算せよ。
(2)実数tに対し、z=(1-t)+t$\sqrt 3 i$とする。$\alpha$=$\frac{3-\sqrt 3 i}{2}$について、$\alpha z$の実部を求め、さらに($w-\alpha$)($\bar{w-\alpha}$)を求めよ。
(3)wと原点を結んでできる線分Lを考える。zが線分AB上を動くとき、線分Lが通過する範囲を図示し、その面積を求めよ。
福田の数学〜北海道大学2023年理系第1問〜複素数平面上の図形の列
単元:
#大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 複素数平面上における図形$C_1$, $C_2$, ...,$C_n$, ...は次の条件(A)と(B)を満たすとする。ただし、$i$は虚数単位とする。
(A)$C_1$は原点Oを中心とする半径2の円である。
(B)自然数nに対して、zが$C_n$上を動くとき2w=z+1+$i$で定まるwの描く図形が$C_{n+1}$である。
(1)すべての自然数nに対して、$C_n$は円であることを示し、その中心を表す複素数$\alpha_n$と半径$r_n$を求めよ。
(2)$C_n$上の点とOとの距離の最小値を$d_n$とする。このとき、$d_n$を求めよ。
また、$\displaystyle\lim_{n \to \infty}d_n$を求めよ。
2023北海道大学理系過去問
この動画を見る
$\Large\boxed{1}$ 複素数平面上における図形$C_1$, $C_2$, ...,$C_n$, ...は次の条件(A)と(B)を満たすとする。ただし、$i$は虚数単位とする。
(A)$C_1$は原点Oを中心とする半径2の円である。
(B)自然数nに対して、zが$C_n$上を動くとき2w=z+1+$i$で定まるwの描く図形が$C_{n+1}$である。
(1)すべての自然数nに対して、$C_n$は円であることを示し、その中心を表す複素数$\alpha_n$と半径$r_n$を求めよ。
(2)$C_n$上の点とOとの距離の最小値を$d_n$とする。このとき、$d_n$を求めよ。
また、$\displaystyle\lim_{n \to \infty}d_n$を求めよ。
2023北海道大学理系過去問
複素数平面の基本⑬3点が一直線上にあるとき、なす角が垂直のときを考える
複素数平面の基本⑫半直線のなす角を考える
複素数平面の基本⑪図形の方程式を条件から考える
単元:
#複素数平面#図形への応用#数学(高校生)#数C
教材:
#4S数学#4S数学Ⅲ#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
点zが原点Oを中心とする半径2の円上を動くとき、w=(z-2)/(z+1)はどのような図形を描くか
この動画を見る
点zが原点Oを中心とする半径2の円上を動くとき、w=(z-2)/(z+1)はどのような図形を描くか
複素数平面の基本⑩円の方程式を条件から考える
単元:
#複素数平面#図形への応用#数学(高校生)#数C
教材:
#4S数学#4S数学Ⅲ#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の方程式を満たす点z全体はどのような図形を表すか
∣z+1∣=2∣z-2∣
この動画を見る
次の方程式を満たす点z全体はどのような図形を表すか
∣z+1∣=2∣z-2∣
複素数平面の基本⑨垂直二等分線を考える
複素数平面の基本⑧円の方程式を考える
単元:
#複素数平面#図形への応用#数学(高校生)#数C
教材:
#4S数学#4S数学Ⅲ#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
円の方程式を考える
次の方程式で与えられる円の中心、半径を求めよ
(1)∣z+2i∣=3
(2)∣z+3-2i∣=1
(3)∣z-i∣=1
この動画を見る
円の方程式を考える
次の方程式で与えられる円の中心、半径を求めよ
(1)∣z+2i∣=3
(2)∣z+3-2i∣=1
(3)∣z-i∣=1
複素数平面の基本⑦内分点、外分点、重心を考える
単元:
#複素数平面#図形への応用#数学(高校生)#数C
教材:
#4S数学#4S数学Ⅲ#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
内分点、外分点、重心を考える
A(-3+2i),B(4-8i)のとき線分ABの中点、3:1に内分、外分する点を表す複素数を求めよ
α=0,β=2+3i,γ=1+6iの3点で表される三角形の重心を表す複素数を求めよ
この動画を見る
内分点、外分点、重心を考える
A(-3+2i),B(4-8i)のとき線分ABの中点、3:1に内分、外分する点を表す複素数を求めよ
α=0,β=2+3i,γ=1+6iの3点で表される三角形の重心を表す複素数を求めよ
慈恵医大 複素数の基本問題
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学#東京慈恵会医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\alpha=\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
(1)$\alpha^7,\displaystyle \sum_{k=0}^6 {\alpha}_{k}$の値を求めよ.
(2)$\beta=\alpha^3+\alpha^5+\alpha^6$とするとき,$\beta+\bar{\beta},\beta\bar{\beta}$の値を求めよ.
(3)$\beta=a+bi,b$の正負を判定し$a,b$の値を求めよ.
この動画を見る
$\alpha=\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
(1)$\alpha^7,\displaystyle \sum_{k=0}^6 {\alpha}_{k}$の値を求めよ.
(2)$\beta=\alpha^3+\alpha^5+\alpha^6$とするとき,$\beta+\bar{\beta},\beta\bar{\beta}$の値を求めよ.
(3)$\beta=a+bi,b$の正負を判定し$a,b$の値を求めよ.
福田の1.5倍速演習〜合格する重要問題075〜浜松医科大学2017年度医学部第1問〜複素数の実部と虚部
単元:
#大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 以下の問いに答えよ。
(1)|z| ≦ |z-($\sqrt 3 + i$)|, |z-$\bar{z}$| ≦ 1および|z-$2i$| ≦ 2を同時にみたす複素数zに対応する点の領域を複素数平面上に図示せよ。
(2)(1)で得られた領域内の点に対応する複素数のうち、実部が最大となるものを$\alpha$、実部と虚部の和が最大となるものを$\beta$とするとき、$\alpha$と$\beta$を求めよ。
(3)次の式で定義される$w_n$の実部を$R_n$とするとき、無限級数$\displaystyle\sum_{n=1}^{\infty}R_n$の和を求めよ。
$w_n=\displaystyle\frac{\{1+(2-\sqrt 3)i\}(\sqrt 3+i)^{3(n-1)}}{2^{4(n-1)}}$ $(n=1,2,3,\dots)$
2017浜松医科大学医学部過去問
この動画を見る
$\Large\boxed{1}$ 以下の問いに答えよ。
(1)|z| ≦ |z-($\sqrt 3 + i$)|, |z-$\bar{z}$| ≦ 1および|z-$2i$| ≦ 2を同時にみたす複素数zに対応する点の領域を複素数平面上に図示せよ。
(2)(1)で得られた領域内の点に対応する複素数のうち、実部が最大となるものを$\alpha$、実部と虚部の和が最大となるものを$\beta$とするとき、$\alpha$と$\beta$を求めよ。
(3)次の式で定義される$w_n$の実部を$R_n$とするとき、無限級数$\displaystyle\sum_{n=1}^{\infty}R_n$の和を求めよ。
$w_n=\displaystyle\frac{\{1+(2-\sqrt 3)i\}(\sqrt 3+i)^{3(n-1)}}{2^{4(n-1)}}$ $(n=1,2,3,\dots)$
2017浜松医科大学医学部過去問
複素数平面!円が1と−1を通るということは・・・【京都大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
複素数$a$に対してその共役な複素数$\bar{ a }$で表す。
$a$を実数でない複素数とする。複素数平面内の円$C$が$1,-1,a$を通るならば,$C$は-$\displaystyle \frac{1}{\bar{ a }}$も通ることを示せ。
この動画を見る
複素数$a$に対してその共役な複素数$\bar{ a }$で表す。
$a$を実数でない複素数とする。複素数平面内の円$C$が$1,-1,a$を通るならば,$C$は-$\displaystyle \frac{1}{\bar{ a }}$も通ることを示せ。
複素数平面!円が1と−1を通るということは・・・【京都大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
複素数αに対してその共役な複素数をα¯で表す。
αを実数でない複素数とする。 複素数平面内の円Cが1, -1,αを通るならば,
Cは、-1/α¯も通ることを示せ。
この動画を見る
複素数αに対してその共役な複素数をα¯で表す。
αを実数でない複素数とする。 複素数平面内の円Cが1, -1,αを通るならば,
Cは、-1/α¯も通ることを示せ。
福田の数学〜中央大学2022年理工学部第4問〜複素数平面上の共線条件と正三角形になる条件
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ tを実数とし、xの3次式f(x) を\hspace{191pt}\\
f(x) = x^3 + (1-2t)x^2+(4-2t)x+4\hspace{131pt}\\
により定める。以下の問いに答えよ。\hspace{165pt}\\
(1) 3次式f(x) を実数係数の2次式と1次式の積に因数分解し、f(x) = 0 が虚数の\hspace{8pt}\\
解をもつようなtの範囲を求めよ。\hspace{174pt}\\
\\
実数tが (1) で求めた範囲にあるとき、方程式 f(x) = 0 の異なる2つの虚数解を\hspace{14pt}\\
α, βとし、実数解をγとする。ただし、αの虚部は正、βの虚部は負とする。\hspace{19pt}\\
以下、α, β, γを複素数平面上の点とみなす。\hspace{131pt}\\
(2) α, β, γをtを用いて表せ。また、実数tが (1) で求めた範囲を動くとき、点α\hspace{19pt}\\
が描く図形を複素数平面上に図示せよ。\hspace{152pt}\\
\\
(3) 3点α, β, γが一直線上にあるようなtの値を求めよ。\hspace{100pt}\\
\\
(4)3点α, β, γが正三角形の頂点となるようなtの値を求めよ。\hspace{76pt}\\
\end{eqnarray}
2022中央大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{4}}\ tを実数とし、xの3次式f(x) を\hspace{191pt}\\
f(x) = x^3 + (1-2t)x^2+(4-2t)x+4\hspace{131pt}\\
により定める。以下の問いに答えよ。\hspace{165pt}\\
(1) 3次式f(x) を実数係数の2次式と1次式の積に因数分解し、f(x) = 0 が虚数の\hspace{8pt}\\
解をもつようなtの範囲を求めよ。\hspace{174pt}\\
\\
実数tが (1) で求めた範囲にあるとき、方程式 f(x) = 0 の異なる2つの虚数解を\hspace{14pt}\\
α, βとし、実数解をγとする。ただし、αの虚部は正、βの虚部は負とする。\hspace{19pt}\\
以下、α, β, γを複素数平面上の点とみなす。\hspace{131pt}\\
(2) α, β, γをtを用いて表せ。また、実数tが (1) で求めた範囲を動くとき、点α\hspace{19pt}\\
が描く図形を複素数平面上に図示せよ。\hspace{152pt}\\
\\
(3) 3点α, β, γが一直線上にあるようなtの値を求めよ。\hspace{100pt}\\
\\
(4)3点α, β, γが正三角形の頂点となるようなtの値を求めよ。\hspace{76pt}\\
\end{eqnarray}
2022中央大学理工学部過去問
福田の数学〜中央大学2022年理工学部第4問〜複素数平面上の共線条件と正三角形になる条件
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#剰余の定理・因数定理・組み立て除法と高次方程式#図形への応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
中央大学2022年理工学部第4問解説です
tを実数とし、 xの3次式f(x) を
ƒ(x) = x³ + (1 − 2t)x² + (4 − 2t)x +4
により定める。以下の問いに答えよ。
(1) 3 次式f(x) を実数係数の2次式と1次式の積に因数分解し、f(x)=0 が虚数の
解をもつようなtの範囲を求めよ。
実数t が (1) で求めた範囲にあるとき、 方程式 f(x) = 0 の異なる2つの虚数解を
a,βとし、実数解をγとする。ただし、αの虚部は正、βの虚部は負とする。
以下、α, β,γを複素数平面上の点とみなす。
(2) α, β,γをtを用いて表せ。また、実数t が (1) で求めた範囲を動くとき、点α
が描く図形を複素数平面上に図示せよ。
(3) 3点 α, β, γが一直線上にあるようなtの値を求めよ。
(4) 3点 α, β, γが正三角形の頂点となるようなtの値を求めよ。
この動画を見る
中央大学2022年理工学部第4問解説です
tを実数とし、 xの3次式f(x) を
ƒ(x) = x³ + (1 − 2t)x² + (4 − 2t)x +4
により定める。以下の問いに答えよ。
(1) 3 次式f(x) を実数係数の2次式と1次式の積に因数分解し、f(x)=0 が虚数の
解をもつようなtの範囲を求めよ。
実数t が (1) で求めた範囲にあるとき、 方程式 f(x) = 0 の異なる2つの虚数解を
a,βとし、実数解をγとする。ただし、αの虚部は正、βの虚部は負とする。
以下、α, β,γを複素数平面上の点とみなす。
(2) α, β,γをtを用いて表せ。また、実数t が (1) で求めた範囲を動くとき、点α
が描く図形を複素数平面上に図示せよ。
(3) 3点 α, β, γが一直線上にあるようなtの値を求めよ。
(4) 3点 α, β, γが正三角形の頂点となるようなtの値を求めよ。
福田の数学〜上智大学2022年理工学部第3問〜複素数平面上の点列と三角形の相似
単元:
#大学入試過去問(数学)#複素数平面#相似な図形#数列#漸化式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ 複素数からなる数列{z_n}を、次の条件で定める。\hspace{150pt}\\
z_1=0,\ \ \ z_{n+1}=(1+i)z_n-i \ \ \ (i=1,2,3, \ \ ...)\\
正の整数nに対し、z_nに対応する負素数平面上の点をA_nとおく。\\
(1)z_2=\boxed{\ \ ツ \ \ }+\boxed{\ \ ツ \ \ }\ i, \ \ \ z_3=\boxed{\ \ ト \ \ }+\boxed{\ \ ナ \ \ }\ i,\ \ \ z_4=\boxed{\ \ 二 \ \ }+\boxed{\ \ ヌ \ \ }\ i \ \ である。\\
(2)r \gt 0,\ 0 \leqq θ \lt 2\pi を用いて、1+i=r(\cos θ+i\sin θ)のように1+iを極形式で\\
表すとき、r=\sqrt{\boxed{\ \ ネ \ \ }},\ θ=\frac{\boxed{\ \ ノ \ \ }}{\boxed{\ \ ハ \ \ }}\piである。\\
(3)すべての正の整数nに対する\triangle PA_nA_{n+1}が互いに相似になる点Pに対応する\\
複素数は、\boxed{\ \ ヒ\ \ }+\boxed{\ \ フ \ \ }\ iである。\\
(4)|z_n| \gt 1000となる最小のnはn=\boxed{\ \ へ \ \ }である。\\
(5)A_{2022+k}が実軸上にある最小の正の整数kはk=\boxed{\ \ ホ \ \ }である。
\end{eqnarray}
2022上智大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{3}}\ 複素数からなる数列{z_n}を、次の条件で定める。\hspace{150pt}\\
z_1=0,\ \ \ z_{n+1}=(1+i)z_n-i \ \ \ (i=1,2,3, \ \ ...)\\
正の整数nに対し、z_nに対応する負素数平面上の点をA_nとおく。\\
(1)z_2=\boxed{\ \ ツ \ \ }+\boxed{\ \ ツ \ \ }\ i, \ \ \ z_3=\boxed{\ \ ト \ \ }+\boxed{\ \ ナ \ \ }\ i,\ \ \ z_4=\boxed{\ \ 二 \ \ }+\boxed{\ \ ヌ \ \ }\ i \ \ である。\\
(2)r \gt 0,\ 0 \leqq θ \lt 2\pi を用いて、1+i=r(\cos θ+i\sin θ)のように1+iを極形式で\\
表すとき、r=\sqrt{\boxed{\ \ ネ \ \ }},\ θ=\frac{\boxed{\ \ ノ \ \ }}{\boxed{\ \ ハ \ \ }}\piである。\\
(3)すべての正の整数nに対する\triangle PA_nA_{n+1}が互いに相似になる点Pに対応する\\
複素数は、\boxed{\ \ ヒ\ \ }+\boxed{\ \ フ \ \ }\ iである。\\
(4)|z_n| \gt 1000となる最小のnはn=\boxed{\ \ へ \ \ }である。\\
(5)A_{2022+k}が実軸上にある最小の正の整数kはk=\boxed{\ \ ホ \ \ }である。
\end{eqnarray}
2022上智大学理工学部過去問
福岡教育大 複素平面の基本
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ z=a+bi(a \gt 0,b \gt 0)z^2+\dfrac{1}{z^2}=1を満たす.
(1)zを極形式で表せ(0 \lt \theta \lt 2\pi)
(2)z^{100}+\dfrac{1}{z^{100}}の値を求めよ.
(3)z,z^2,z^{100}+\dfrac{1}{z^{100}}の三点でできる三角形の面積を求めよ.$
この動画を見る
$ z=a+bi(a \gt 0,b \gt 0)z^2+\dfrac{1}{z^2}=1を満たす.
(1)zを極形式で表せ(0 \lt \theta \lt 2\pi)
(2)z^{100}+\dfrac{1}{z^{100}}の値を求めよ.
(3)z,z^2,z^{100}+\dfrac{1}{z^{100}}の三点でできる三角形の面積を求めよ.$
福田の数学〜早稲田大学2022年人間科学部第7問〜複素数平面上の点の軌跡
単元:
#数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#円と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{7}}\ iを虚数単位とする。\alpha=-1+iとし、zは次の条件をともに満たす複素数とする。\\
条件1.\hspace{10pt}\frac{z-\alpha}{z-\bar{\alpha}}の実部は0である。\\
条件2.\hspace{10pt}zの虚部は0以上である。\\
このとき、複素数平面上でzがとりうる値全体の集合を表す図形Cと、実軸で\\
\\
囲まれる部分の面積は\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\piである。\\
\\
また、w=\frac{iz}{z+1}で表される点wがとりうる値全体の集合を表す図形と、\\
図形Cで囲まれる部分の面積は\frac{\boxed{\ \ ウ\ \ }\ \pi+\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}である。
\end{eqnarray}
2022早稲田大学人間科学部過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{7}}\ iを虚数単位とする。\alpha=-1+iとし、zは次の条件をともに満たす複素数とする。\\
条件1.\hspace{10pt}\frac{z-\alpha}{z-\bar{\alpha}}の実部は0である。\\
条件2.\hspace{10pt}zの虚部は0以上である。\\
このとき、複素数平面上でzがとりうる値全体の集合を表す図形Cと、実軸で\\
\\
囲まれる部分の面積は\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\piである。\\
\\
また、w=\frac{iz}{z+1}で表される点wがとりうる値全体の集合を表す図形と、\\
図形Cで囲まれる部分の面積は\frac{\boxed{\ \ ウ\ \ }\ \pi+\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}である。
\end{eqnarray}
2022早稲田大学人間科学部過去問
福田の数学〜神戸大学2022年理系第2問〜無限等比級数の図形への応用
単元:
#大学入試過去問(数学)#複素数平面#関数と極限#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ mを3以上の自然数、\theta=\frac{2\pi}{m}, C_1を半径1の円とする。\hspace{100pt}\\
円C_1に内接する(全ての頂点がC_1上にある)正m角形をP_1とし、\\
P_1に内接する(P_1の全ての辺と接する)円をC_2とする。\\
同様に、nを自然数とするとき、円C_nに内接する正m角形をP_nとし、\\
P_nに内接する円をC_{n+1}とする。C_nの半径をr_n,C_nの内側\\
でP_nの外側の部分の面積をs_nとし、f(m)=\sum_{n=1}^{\infty}s_nとする。以下の問いに答えよ。\\
(1)r_n,s_nの値を\theta,nを用いて表せ。\\
(2)f(m)の値を\thetaを用いて表せ。\\
(3)極限値\lim_{m \to \infty}f(m)を求めよ。\\
ただし必要があれば\lim_{x \to 0}\frac{x-\sin x}{x^3}=\frac{1}{6}を用いてよい。
\end{eqnarray}
2022神戸大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}}\ mを3以上の自然数、\theta=\frac{2\pi}{m}, C_1を半径1の円とする。\hspace{100pt}\\
円C_1に内接する(全ての頂点がC_1上にある)正m角形をP_1とし、\\
P_1に内接する(P_1の全ての辺と接する)円をC_2とする。\\
同様に、nを自然数とするとき、円C_nに内接する正m角形をP_nとし、\\
P_nに内接する円をC_{n+1}とする。C_nの半径をr_n,C_nの内側\\
でP_nの外側の部分の面積をs_nとし、f(m)=\sum_{n=1}^{\infty}s_nとする。以下の問いに答えよ。\\
(1)r_n,s_nの値を\theta,nを用いて表せ。\\
(2)f(m)の値を\thetaを用いて表せ。\\
(3)極限値\lim_{m \to \infty}f(m)を求めよ。\\
ただし必要があれば\lim_{x \to 0}\frac{x-\sin x}{x^3}=\frac{1}{6}を用いてよい。
\end{eqnarray}
2022神戸大学理系過去問
福田の数学〜大阪大学2022年理系第1問〜複素数平面上の点の軌跡
単元:
#数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
rを正の実数とする。
複素数平面上で点Zが点3/2を中心とする半径rの円周上を動くとき、
Z+w=Zw
を満たす点wが描く図形を求めよ。
2022大阪大学理系過去問
この動画を見る
rを正の実数とする。
複素数平面上で点Zが点3/2を中心とする半径rの円周上を動くとき、
Z+w=Zw
を満たす点wが描く図形を求めよ。
2022大阪大学理系過去問
正五角形の作図と証明
福田の数学〜東工大2022理系1修正版
単元:
#大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ a,bを実数とし、f(z)=z^2+az+b とする。a,bが\\
|a| \leqq 1, |b| \leqq 1\\
を満たしながら動くとき、f(z)=0を満たす複素数zが取りうる値の範囲を\\
複素平面上に図示せよ。
\end{eqnarray}
2022東京工業大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}}\ a,bを実数とし、f(z)=z^2+az+b とする。a,bが\\
|a| \leqq 1, |b| \leqq 1\\
を満たしながら動くとき、f(z)=0を満たす複素数zが取りうる値の範囲を\\
複素平面上に図示せよ。
\end{eqnarray}
2022東京工業大学理系過去問