福田の数学〜東工大2022理系1修正版 - 質問解決D.B.(データベース)

福田の数学〜東工大2022理系1修正版

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ a,bを実数とし、f(z)=z^2+az+b とする。a,bが\\
|a| \leqq 1,  |b| \leqq 1\\
を満たしながら動くとき、f(z)=0を満たす複素数zが取りうる値の範囲を\\
複素平面上に図示せよ。
\end{eqnarray}
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ a,bを実数とし、f(z)=z^2+az+b とする。a,bが\\
|a| \leqq 1,  |b| \leqq 1\\
を満たしながら動くとき、f(z)=0を満たす複素数zが取りうる値の範囲を\\
複素平面上に図示せよ。
\end{eqnarray}
投稿日:2022.03.29

<関連動画>

福田の入試問題解説〜北海道大学2022年理系第5問〜複素数平面上の点の軌跡とドモアブルの定理

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{5}}}\ 複素数zに関する次の2つの方程式を考える。ただし、\bar{ z }はzと共役な複素数とし、\\
iを虚数単位とする。\\
\\
z\bar{ z }=4 \ldots\ldots①     |z|=|z-\sqrt3+i| \ldots\ldots②\\
\\
(1)①、②それぞれの方程式について、その解z全体が表す図形を複素数平面上に\\
図示せよ。\\
\\
(2)①、②の共通解となる複素数を全て求めよ。\\
\\
(3)(2)で求めた全ての複素数の積をwとおく。このときw^nが負の実数となる\\
ための整数nの必要十分条件を求めよ。
\end{eqnarray}
この動画を見る 

複素数平面の基本⑨垂直二等分線を考える

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面における垂直二等分線を考える
この動画を見る 

複素数平面の基本⑪図形の方程式を条件から考える

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
教材: #4STEP(4ステップ)数学#4STEP数学Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
点zが原点Oを中心とする半径2の円上を動くとき、w=(z-2)/(z+1)はどのような図形を描くか
この動画を見る 

複素数平面の基本⑫半直線のなす角を考える

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面における半直線のなす角を考える
この動画を見る 

複素数平面!円が1と−1を通るということは・・・【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
複素数$a$に対してその共役な複素数$\bar{ a }$で表す。

$a$を実数でない複素数とする。複素数平面内の円$C$が$1,-1,a$を通るならば,$C$は-$\displaystyle \frac{1}{\bar{ a }}$も通ることを示せ。
この動画を見る 
PAGE TOP