【数C】【空間ベクトル】定点A(0,0,2),B(1,2,1)とxy平面に同点Pがある。このとき、AP+BPの最小値を求めよ。 - 質問解決D.B.(データベース)

【数C】【空間ベクトル】定点A(0,0,2),B(1,2,1)とxy平面に同点Pがある。このとき、AP+BPの最小値を求めよ。

問題文全文(内容文):
定点A(0,0,2),B(1,2,1)とxy平面に同点Pがある。このとき、AP+BPの最小値を求めよ。
チャプター:

0:00 問題概要
0:16 図示
0:52 跳ね返りの問題
1:42 点Bの対称移動
2:17 B'の座標
3:12 解答

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
定点A(0,0,2),B(1,2,1)とxy平面に同点Pがある。このとき、AP+BPの最小値を求めよ。
投稿日:2025.12.09

<関連動画>

【数C】ベクトル:二点を通る直線・空間版

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(-2,1,-1)とB(1,3,2)を通る直線の方程式を求めよ。変数x,y,zを用いて表せ。
この動画を見る 

【平面の方程式の基礎】平面の方程式は直線の方程式と同じように理解できます〔数学、高校数学〕

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
平面の方程式について解説します。
この動画を見る 

【高校数学】 数B-43 空間ベクトルの内積③

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①4点$A(8,2,-3),B(1,3,2),C(5,1,8),D(3,-3,6)$を頂点とする
四面体$ABCD$がある.$AB\perp BC,AB\perp BD$であることを示し,
四面体$ABCD$の体積を求めよう.

②4点$0(0,0,0),A(4,0,2),B(3,3,3),C(3,0,4)$を頂点とする
四面体$OABC$の体積を求めよう.
この動画を見る 

福田の数学〜東京大学2023年理系第4問〜球面と三角形が共有点をもつ条件

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#空間ベクトル#集合と命題(集合・命題と条件・背理法)#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標空間内の4点O(0,0,0), A(2,0,0), B(1,1,1), C(1,2,3)を考える。
(1)$\overrightarrow{OP}\bot\overrightarrow{OA}$, $\overrightarrow{OP}\bot\overrightarrow{OB}$, $\overrightarrow{OP}\bot\overrightarrow{OC}$=1 を満たす点Pの座標を求めよ。
(2)点Pから直線ABに垂線を下ろし、その垂線と直線ABの交点をHとする。
$\overrightarrow{OH}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
(3)点Qを$\overrightarrow{OQ}$=$\frac{3}{4}\overrightarrow{OA}$+$\overrightarrow{OP}$により定め、Qを中心とする半径rの球面Sを考える。Sが三角形OHBと共有点を持つようなrの範囲を求めよ。ただし、三角形OHBは3点O, H, Bを含む平面内にあり、周とその内部からなるものとする。

2023東京大学理系過去問
この動画を見る 

福田の数学〜明治大学2024理工学部第1問(2)〜空間ベクトルと四面体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$k$ を正の実数とし、座標空間内の $4$ 点 $\mathrm{O}(0,0,0),$ $\mathrm{A}(k,2,1),$ $\mathrm{B}(-k,1,2),$ $\mathrm{C}(1,1,1)$ を考える。 $2$ つのベクトル $\overrightarrow{\mathrm{OA}}$ と $\overrightarrow{\mathrm{OB}}$ は垂直であるとする。また、 $3$ 点 $\mathrm{O},\mathrm{A},\mathrm{B}$ を通る平面を $\alpha$ とし、点 $\mathrm{C}$ から$\alpha$ へ下ろした垂線と平面 $\alpha$ の交点を $\mathrm{H}$ とする。このとき、 $k=\fbox{キ}$ であり、 $\triangle \mathrm{OAB}$ の面積は $\displaystyle \frac{\fbox{ク}}{\fbox{ケ}}$ である。また、$\overrightarrow{\mathrm{OH}}=$$\displaystyle \frac{\fbox{コ}}{\fbox{サ}} \overrightarrow{\mathrm{OA}}$$\displaystyle + \frac{\fbox{シ}}{\fbox{ス}} \overrightarrow{\mathrm{OB}}$ であり、四面体 $\mathrm{OABC}$ の体積は $\displaystyle \frac{\fbox{セ}}{\fbox{ソ}}$ である。
この動画を見る 
PAGE TOP