問題文全文(内容文):
半径 $a$ の円 $\mathrm{O}$ の周上に動点 $\mathrm{P}$ と定点 $\mathrm{A}$ がある。
$\mathrm{A}$ における接線上に
$\mathrm{AQ = AP}$ であるような点 $\mathrm{Q}$ を直線 $\mathrm{OA}$ に関して $\mathrm{P}$ と同じ側にとる。
$\mathrm{P}$ が $\mathrm{A}$ に限りなく近づくとき$,$ $\displaystyle \frac{\mathrm{PQ}}{\mathrm{\stackrel{\huge\frown}{AP}}^2}$ の極限値を求めよ。
ただし$,$ $\mathrm{\stackrel{\huge\frown}{AP}}$ は $\angle \mathrm{AOP}$ ($\displaystyle 0 \lt \angle \mathrm{AOP} \lt \frac{\pi}{2}$)に対する
弧 $\mathrm{AP}$ の長さを表す。
半径 $a$ の円 $\mathrm{O}$ の周上に動点 $\mathrm{P}$ と定点 $\mathrm{A}$ がある。
$\mathrm{A}$ における接線上に
$\mathrm{AQ = AP}$ であるような点 $\mathrm{Q}$ を直線 $\mathrm{OA}$ に関して $\mathrm{P}$ と同じ側にとる。
$\mathrm{P}$ が $\mathrm{A}$ に限りなく近づくとき$,$ $\displaystyle \frac{\mathrm{PQ}}{\mathrm{\stackrel{\huge\frown}{AP}}^2}$ の極限値を求めよ。
ただし$,$ $\mathrm{\stackrel{\huge\frown}{AP}}$ は $\angle \mathrm{AOP}$ ($\displaystyle 0 \lt \angle \mathrm{AOP} \lt \frac{\pi}{2}$)に対する
弧 $\mathrm{AP}$ の長さを表す。
チャプター:
0:00 問題と方針
1:41 解説
単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
半径 $a$ の円 $\mathrm{O}$ の周上に動点 $\mathrm{P}$ と定点 $\mathrm{A}$ がある。
$\mathrm{A}$ における接線上に
$\mathrm{AQ = AP}$ であるような点 $\mathrm{Q}$ を直線 $\mathrm{OA}$ に関して $\mathrm{P}$ と同じ側にとる。
$\mathrm{P}$ が $\mathrm{A}$ に限りなく近づくとき$,$ $\displaystyle \frac{\mathrm{PQ}}{\mathrm{\stackrel{\huge\frown}{AP}}^2}$ の極限値を求めよ。
ただし$,$ $\mathrm{\stackrel{\huge\frown}{AP}}$ は $\angle \mathrm{AOP}$ ($\displaystyle 0 \lt \angle \mathrm{AOP} \lt \frac{\pi}{2}$)に対する
弧 $\mathrm{AP}$ の長さを表す。
半径 $a$ の円 $\mathrm{O}$ の周上に動点 $\mathrm{P}$ と定点 $\mathrm{A}$ がある。
$\mathrm{A}$ における接線上に
$\mathrm{AQ = AP}$ であるような点 $\mathrm{Q}$ を直線 $\mathrm{OA}$ に関して $\mathrm{P}$ と同じ側にとる。
$\mathrm{P}$ が $\mathrm{A}$ に限りなく近づくとき$,$ $\displaystyle \frac{\mathrm{PQ}}{\mathrm{\stackrel{\huge\frown}{AP}}^2}$ の極限値を求めよ。
ただし$,$ $\mathrm{\stackrel{\huge\frown}{AP}}$ は $\angle \mathrm{AOP}$ ($\displaystyle 0 \lt \angle \mathrm{AOP} \lt \frac{\pi}{2}$)に対する
弧 $\mathrm{AP}$ の長さを表す。
投稿日:2026.02.07





