問題文全文(内容文):
極座標に関して、中心が $(2,\frac{\pi}{6})$、
半径 $\sqrt{3}$ である円に、極から引いた
2 本の接線の極方程式を求めよ。
極座標に関して、中心が $(2,\frac{\pi}{6})$、
半径 $\sqrt{3}$ である円に、極から引いた
2 本の接線の極方程式を求めよ。
チャプター:
0:00 問題概要
0:35 条件に合う図形の概形を考える
1:14 直線の極方程式の公式
1:33 1本目の答え
2:08 2本目の答え
2:34 なす角の考え方
単元:
#平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師:
理数個別チャンネル
問題文全文(内容文):
極座標に関して、中心が $(2,\frac{\pi}{6})$、
半径 $\sqrt{3}$ である円に、極から引いた
2 本の接線の極方程式を求めよ。
極座標に関して、中心が $(2,\frac{\pi}{6})$、
半径 $\sqrt{3}$ である円に、極から引いた
2 本の接線の極方程式を求めよ。
投稿日:2026.02.21





