【数学】中高一貫校用問題集幾何:三平方の定理:平面図形 放物線と直線の交点の面積 - 質問解決D.B.(データベース)

【数学】中高一貫校用問題集幾何:三平方の定理:平面図形 放物線と直線の交点の面積

問題文全文(内容文):
右の図のように、放物線$y=\displaystyle \frac{x^2}{2}$と直線$y=\displaystyle \frac{x}{2}+6$が2点A, Bで交わっていて、原点O(0,0)から直線ABに引いた垂線をOHとする。
(1)△OABの面積を求めなさい。
(2)垂線OHの長さを求めなさい。
チャプター:

0:00 オープニング
0:05 問題文
0:19 (1)解説
2:21 (2)解説
4:47 エンディング

単元: #数学(中学生)#中3数学#三平方の定理
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
右の図のように、放物線$y=\displaystyle \frac{x^2}{2}$と直線$y=\displaystyle \frac{x}{2}+6$が2点A, Bで交わっていて、原点O(0,0)から直線ABに引いた垂線をOHとする。
(1)△OABの面積を求めなさい。
(2)垂線OHの長さを求めなさい。
投稿日:2024.07.17

<関連動画>

2023高校入試数学解説84問目 一次関数と二次関数  埼玉県学校選択問題

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#1次関数#2次関数#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$y=ax^2$
$y=bx+c$
a,b,c大小関係を不等号で表せ
*図は動画内参照

2023埼玉県
この動画を見る 

【高校受験対策/数学】死守-92

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#平面図形#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守92

①$12÷(-4)$を計算しなさい。

②$\sqrt{3}×\sqrt{8}$を計算しなさい。

③$(x-4)(x-5)$を展開しなさい。

④二次方程式$x^2-5x+3=0$を解きなさい。

⑤$\frac{336}{n}$の値が、ある自然数の2乗となるような自然数$n$のうち、
最も小さいものを求めなさい。

⑥右の表は、ある中学校の生徒30人が1か月に読んだ本の冊数を調べて、度数分布表に整理 したものである。
ただし、一部が汚れて度数が見えなくなっている。
この度数分布表について、3冊以上6冊未満の階級の相対度数を求めなさい。

⑦右の図のように、五角形$ABCDE$があり、$\angle BCD=105°,$$\angle CDE=110°$である。
また、頂点$A,E$における外角$B$の大きさがそれぞれ$70°,80°$であるとき、
$\angle ABC$の大きさを求めなさい。

⑧二次関数$y=\frac{5}{2}x+a$のグラフは点$(4,3)$を通る。
このグラフと$y$軸との交点の座標を求めなさい。
この動画を見る 

"2025"を含む問題予想《考察編》:入試予想問題~全国入試問題解法

単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$2025 = 45^2$
この動画を見る 

【短時間でマスター!!】三角比の相互関係を解説!(sin,cos,tanの求め方)〔現役講師解説、数学〕

アイキャッチ画像
単元: #中3数学#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
三角比の相互関係を解説します。
$\sin,\cos,\tan$の求め方

$0^{\circ}\leqq\theta\leqq180^{\circ}$
$\sin\theta=\frac{1}{3}$のとき$\cos\theta,\tan\theta$は?
この動画を見る 

佐賀県立高校入試2021年5⃣(4)「相似」

アイキャッチ画像
単元: #数学(中学生)#中3数学#相似な図形#高校入試過去問(数学)#佐賀県立高校
指導講師: 重吉
問題文全文(内容文):
佐賀県立高校入試2021年5⃣(4)「相似」
-----------------
動画内の図のように、ABを斜辺とする2つの直角三角形ABCとABDがあり、辺BCとADの交点をEとする。
また、AC=2cm、BC=3cm、CE=1cmとする。

点Eから辺ABに重線をひき、その交点をFとする。 このとき、(ア)、(イ)の問いに答えなさい。
(ア)線分EFの長さを求めなさい。
(イ)△BCFの面積をS$_{1}$、△BEDの面積をS$_{2}$とするとき、S$_{1}$:S$_{2}$を
  最も簡単な整数の比で表しなさい。
この動画を見る 
PAGE TOP