微分法と積分法 数Ⅱ 最大最小を利用した関数の決定【マコちゃんねるがていねいに解説】 - 質問解決D.B.(データベース)

微分法と積分法 数Ⅱ 最大最小を利用した関数の決定【マコちゃんねるがていねいに解説】

問題文全文(内容文):
a,bは定数で、a<0とする。関数f(x)=ax³-3ax²+b (1≦x≦3) の最大値が10,最小値が-2になるように,定数a,bの値を定めよ。
チャプター:

0:00 オープニング
0:10 問題概要説明
0:35 グラフの概形
1:53 最大値最小値の考え方
2:50 aの条件に着目してf(1)とf(3)を比較
4:05 aの条件を満たすかどうか確認

単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,bは定数で、a<0とする。関数f(x)=ax³-3ax²+b (1≦x≦3) の最大値が10,最小値が-2になるように,定数a,bの値を定めよ。
投稿日:2024.09.30

<関連動画>

福田の1.5倍速演習〜合格する重要問題026〜神戸大学2016年度理系数学第5問〜極方程式と媒介変数表示

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上の曲線#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
極方程式で表されたxy平面上の曲線$r=1+\cos\theta(0 \leqq \theta \leqq 2\pi)$をCとする。
(1)曲線C上の点を直交座標(x,y)で表したとき、$\frac{dx}{d\theta}=0$となる点、および
$\frac{dy}{d\theta}=0$となる点の直交座標を求めよ。
(2)$\lim_{\theta \to \pi}\frac{dy}{dx}$を求めよ。
(3)曲線Cの概形をxy平面上にかけ。
(4)曲線Cの長さを求めよ。

2016神戸大学理系過去問
この動画を見る 

明治大 3倍角の公式と3次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3$倍角の公式を利用して$x^3-3x-1=0$の$3$つの解を$cos$を用いて答えよ.

2020明治大過去問
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第1問(1)〜指数法則を使った計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(1)式$3(x+5)^{-\frac{5}{2}}$ の値は、$x$=$0$ のとき $\boxed{\ \ ア\ \ }$ であり、$x$=$4$ のとき $\boxed{\ \ イ\ \ }$ である。
この動画を見る 

大学入試問題#614「これは、時間内で解くのは大変かもしれない」 立命館大学(2023) #曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#数学(高校生)#立命館大学
指導講師: ますただ
問題文全文(内容文):
次の曲線の長さ$L$を求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\cos^4\theta \\
y=\sin^4\theta
\end{array}
\right.
\end{eqnarray}$
$(0 \leqq \theta \leqq \displaystyle \frac{\pi}{2})$

出典:2023年立命館大学 入試問題
この動画を見る 

【数Ⅱ】【三角関数】三角関数の合成4 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
0$\leqq$x$\leqq$πのとき、次の関数の最大値, 最小値を求めよ。(1)については、そのときのxの値も求めよ。
(1) y=sinx+$\sqrt{3}$cosx
(2) y=2sinx+cosx
この動画を見る 
PAGE TOP