福田の数学〜立教大学2024年理学部第1問(4)〜係数が虚数の2次方程式の解 - 質問解決D.B.(データベース)

福田の数学〜立教大学2024年理学部第1問(4)〜係数が虚数の2次方程式の解

問題文全文(内容文):
$$iを虚数単位とする。複素数zはz^{ 2 }=3-2\sqrt{10 }iを満たし、かつzの実部は正であるとする。$$$$このとき、zの実部は\boxed{ カ }であり、虚部は\boxed{ キ }である。$$
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$$iを虚数単位とする。複素数zはz^{ 2 }=3-2\sqrt{10 }iを満たし、かつzの実部は正であるとする。$$$$このとき、zの実部は\boxed{ カ }であり、虚部は\boxed{ キ }である。$$
投稿日:2024.07.07

<関連動画>

日本大(医学部)複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=1+\sqrt3 i$
$\dfrac{(2+\alpha)^6}{\alpha^3}$の値を求めよ.

日本(医)過去問
この動画を見る 

大阪市立大 複素数・整数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c,d$を自然数とする.
$\omega=a-b\sqrt5 i$
$z=c-d\sqrt5 i$
$-\omega z=11+8\sqrt5 i$

$(a,b,c,d)$をすべて求めよ.

2021大阪市立大過去問
この動画を見る 

【高校数学】数Ⅲ-10 複素数の積の図表示②

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①複素数$z$に対して,点$z$を原点$O$を中心として,
$\dfrac{5}{6}\pi$だけ回転した点を表す複素数$w_1$を求めよう.

②$z=-4-2i$とする.点$z$を原点$O$を中心として
$\dfrac{\pi}{3}$だけ回転した点を表す複素数$w_2$を求めよう.

③$z=-3-i$とする.点$z$を原点$O$を中心として,
$-\dfrac{\pi}{4}$だけ回転し,原点からの距離を$\sqrt2$倍に
拡大した点を表す複素数$w_3$を求めよう.
この動画を見る 

大阪教育大 複素数の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=1+\sqrt{ 3 }i,\beta=1-\sqrt{ 3 }i$

(1)
$\displaystyle \frac{1}{\alpha^2}+\displaystyle \frac{1}{\beta^2}$の値を求めよ

(2)
$\displaystyle \frac{\beta^8}{\alpha^7}$の値を求めよ

(3)
$z^4=-8\beta$を満たす$z$を求めよ

出典:1999年大阪教育大学 過去問
この動画を見る 

13東京都教員採用試験(数学1-(6) 複素数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1} - (6)$

$arg Z=\dfrac{4}{3}\pi,arg(1-Z)=\dfrac{\pi}{4}$のとき,
$arg \dfrac{Z}{(1-Z)^2},\vert Z \vert$を求めよ.
この動画を見る 
PAGE TOP