問題文全文(内容文):
整式$p(x)$を$x^3-1$で割った余りが$ax^2-bx+1,$
$x^3+2x^2+2x+1$で割った余りが$-3ax^2+bx+9$である$a,b$の値
出典:2008年東京学芸大学 過去問
整式$p(x)$を$x^3-1$で割った余りが$ax^2-bx+1,$
$x^3+2x^2+2x+1$で割った余りが$-3ax^2+bx+9$である$a,b$の値
出典:2008年東京学芸大学 過去問
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整式の除法・分数式・二項定理#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#東京学芸大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
整式$p(x)$を$x^3-1$で割った余りが$ax^2-bx+1,$
$x^3+2x^2+2x+1$で割った余りが$-3ax^2+bx+9$である$a,b$の値
出典:2008年東京学芸大学 過去問
整式$p(x)$を$x^3-1$で割った余りが$ax^2-bx+1,$
$x^3+2x^2+2x+1$で割った余りが$-3ax^2+bx+9$である$a,b$の値
出典:2008年東京学芸大学 過去問
投稿日:2019.02.03