札幌医科大 2024 複素数の方程式 - 質問解決D.B.(データベース)

札幌医科大 2024 複素数の方程式

問題文全文(内容文):
x>0,y≠0
z=x+yi
$z^3=\overline{z}^2$のときxを求めよ

2024札幌医科大過去問
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
x>0,y≠0
z=x+yi
$z^3=\overline{z}^2$のときxを求めよ

2024札幌医科大過去問
投稿日:2024.03.03

<関連動画>

cos72°を求めよ(誘導あり)慶應(経済)Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
'02慶応義塾大学過去問題
$Z=cos72^\circ+i sin72^\circ$とおく
$Z^n=1$をみたす最小の自然数nは▢
よって、Zは方程式
$Z^4+▢Z^3+▢Z^2+Z+1=0$の解。
$W=Z+\frac{1}{Z}$とおくと、Wは方程式
$W^2+▢W+▢ = 0$の解
$\frac{1}{Z} = cos72^\circ- i sin72^\circ ,cos72^\circ > 0 $
$cos72^\circ = \frac{\sqrt▢-▢}{▢}$

慶應(経済)過去問
この動画を見る 

福田の数学〜早稲田大学2023年教育学部第1問(3)〜連立漸化式と複素数平面

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$x_0=0,y_0=-1$のとき、非負整数$n\geqq 0$に対して、
$x_{n+1}=(\cos \frac{3\pi}{11})x_n-(\sin \frac{3\pi}{11)}y_n$
$y_{n+1}=(\cos \frac{3\pi}{11})x_n+(\sin \frac{3\pi}{11)}y_n$
のとき、$x_n$が最小となる最初のnを求めよ。

2023早稲田大学教育学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第5問(1)〜複素数平面上の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ (1)$\alpha$を±1ではない複素数とする。複素数平面上で$\displaystyle\left|\frac{\alpha z+1}{z+\alpha}\right|$=2 を満たす点$z$全体からなる図形を$C$とする。$C$は$\alpha$が$\boxed{\ \ チ\ \ }$を満たすとき直線となり、$\boxed{\ \ チ\ \ }$を満たさないとき円となる。$\alpha$が$\boxed{\ \ チ\ \ }$を満たさないとき、円$C$の中心を$\alpha$を用いて表すと$\boxed{\ \ ツ\ \ }$となる。$\alpha$が$\boxed{\ \ チ\ \ }$を満たすとき、直線$C$上の点$z$のうち、
その絶対値が最小となるものを$\alpha$を用いて表すと$\boxed{\ \ テ\ \ }$となる。
この動画を見る 

【数ⅢC】複素数平面の基本④複素数の極形式の単位円を用いた考え方

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の複素数を極形式で表せ
$\cos\dfrac{2}{3}\pi-i\sin\dfrac{2}{3}\pi$
この動画を見る 

数検準1級1次過去問(4番 複素数)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#複素数平面#複素数平面#数学検定#数学検定準1級#数学(高校生)#数C#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
4⃣
$α=-2+2i$ , $β=3+3\sqrt{3}i$
(1)$|\frac{α}{β}|$を求めよ。
(2)$\frac{α}{β}$の偏角θを求めよ。
この動画を見る 
PAGE TOP