大学入試問題#673「何度も解いてるはず」 東京慈恵会医科大学(2001) - 質問解決D.B.(データベース)

大学入試問題#673「何度も解いてるはず」 東京慈恵会医科大学(2001)

問題文全文(内容文):
$\displaystyle \int_{0}^{1} log(x^2+3) dx$

出典:2001年東京慈恵会医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} log(x^2+3) dx$

出典:2001年東京慈恵会医科大学 入試問題
投稿日:2023.12.10

<関連動画>

北海道大 等比複素数列 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
北海道大学過去問題
数列{$Z_n$}は初項48、公比$\frac{1}{4}(\sqrt{6}+\sqrt{2}i)$の等比複素数列である。
この数列の項のうち実数のみの項を並べた数列を{$a_n$}
(1)$Z_4$
(2)$a_3$
(3)$\displaystyle\sum_{n=1}^\infty a_n$
この動画を見る 

福田の数学〜早稲田大学2023年教育学部第1問(4)〜三角形の面積の最大Part2

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)辺の長さが3,4,5の3角形がある。それぞれの辺の中点上に3つの点A,B,Cがあり、ある時刻から同時に動き出し、3点とも反時計回りに速さ1で3角形の周上を回る(ある辺から頂点に到達したらその頂点を含む別の辺へと進む)とする。3角形ABCの面積が最大になるときの面積を求めよ。
この動画を見る 

滋賀大 3次関数に相違3接線が引ける条件 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
滋賀大学過去問題
$C:f(x)=\frac{1}{3}x^3-x^2$ A(a,0)
(1)AからCに異なる3本の接線が引けるaの範囲
(2)Aから異なる3本の接線が引けるとき、3本のうち2本が垂直に交わるaの値
この動画を見る 

数学「大学入試良問集」【17−3② 解けない漸化式とはさみうちの原理】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=2,a_{n+1}=\displaystyle \frac{4a_n^2+9}{8a_n}(n=1,2,3,・・・)$で定義される数列$\{a_n\}$について以下の問いに答えよ。
(1)$a_n \gt \displaystyle \frac{3}{2}(n=1,2,3,・・・)$を証明せよ。
(2)$a_{n+1}-\displaystyle \frac{3}{2} \lt \displaystyle \frac{1}{3}\left[ a_n-\dfrac{ 3 }{ 2 } \right]^2(n=1,2,3,・・・)$を証明せよ。
(3)$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
この動画を見る 

福田の数学〜早稲田大学2025商学部第2問〜x軸に関する対称移動とy=√3xに関する対称移動の組合せで決まる点列

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$a,b$を実数とする。

座標平面上の点$P_1,P_2,P_3,\cdots $は

以下の条件を満たしている。

すべての正の奇数$n$に対して、$P_n$と$P_{n+1}$は

$x$軸に関して対称な位置にある。

ただし、$P_n$が$x$軸上にあるときは$P_n=P_{n+1}$で

あるとする。

また、すべての正の偶数$n$に対して、

$P_n$と$P_{n+1}$は直線$y=ax+b$に関して対称な

位置にある。

ただし、$P_n$が直線$y=ax+b$上にあるときは

$P_n=P_{n+1}$であるとする。

(1)$a=0,b=1,P_1(0,0)$であるとき、

$P_{2025}$の座標を求めよ。

(2)$a=1,b=0,P_1(2,1)$であるとき、

$P_{2025}$の座標を求めよ。

(3)$a=\sqrt3,b=0,P_1(1,1)$であるとする。

$m,n$を正の整数とする。

$P_m$と$P_n$の距離の最大値を求めよ。

$2025$年早稲田大学商学部過去問題
この動画を見る 
PAGE TOP