【数A】確率:期待値の巧みな利用 - 質問解決D.B.(データベース)

【数A】確率:期待値の巧みな利用

問題文全文(内容文):
【高校数学 数学A 場合の数と確率 期待値】

無限に続く階段がある。さいころを振って出た目の数だけ登っては立ち止まるということを繰り返す。このとき十分上の方のとある段に立ち止まる確率を求めよ。

(出典 上級国家公務員試験より)
チャプター:

0:00 オープニング
0:12 問題文紹介
1:10 解答解説

単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#確率#その他#その他#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学A 場合の数と確率 期待値】

無限に続く階段がある。さいころを振って出た目の数だけ登っては立ち止まるということを繰り返す。このとき十分上の方のとある段に立ち止まる確率を求めよ。

(出典 上級国家公務員試験より)
投稿日:2021.12.01

<関連動画>

気付けば一瞬!!の確率の問題 東奥義塾

アイキャッチ画像
単元: #数学(中学生)#数A#場合の数と確率#確率#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1⃣ 2⃣ 3⃣ 4⃣ 5⃣
の5枚のカードから3枚のカードを並べてできる3ケタの整数で
奇数となる確率は?

東奥義塾高等学校
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第2問〜色々な条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 1個のさいころを繰り返し投げ、出た目の数により以下の(\textrm{a}),(\textrm{b})に従い得点を定める。\\
(\textrm{a})最初から10回連続して1の目が出た場合には、10回目で投げ終えて、\\
得点を0点とする。\\
(\textrm{b})mを0 \leqq m \leqq 9を満たす整数とする。最初からm回連続して1の目が出て\\
かつm+1回目に初めて1以外の目nが出た場合には、続けてさらにn回\\
投げたところで投げ終えて、1回目からm+n+1回目までに出た目の合計\\
を得点とする。ただし、最初から1以外の目が出た場合にはm=0とする。\\
\\
(1)得点が49点であるとする。このとき、n=\boxed{\ \ ア\ \ }となり、mの取り得る値の範囲\\
は\boxed{\ \ イ\ \ } \leqq m \leqq \boxed{\ \ ウ\ \ }であり、得点が49点となる確率は\frac{\boxed{\ \ エオ\ \ }}{6^{16}}である。また、得点が\\
49点で、さいころを投げる回数が15回以上である確率は\frac{\boxed{\ \ カキ\ \ }}{6^{16}}となる。さらに\\
得点が49点である条件のもとで、さいころを投げる回数が14回以下である\\
条件付き確率は\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コサ\ \ }}となる。\\
\\
(2)さいころを投げる回数が15回以上である確率は\frac{\boxed{\ \ シ\ \ }}{6^{10}}となる。ゆえに、さいころを\\
投げる回数が14回以下である条件のもとで、得点が49点となる条件付き確率\\
は、k=\boxed{\ \ ス\ \ }とおいて\frac{1}{6^k(6^{10}-\boxed{\ \ セ\ \ })}となる。\\
\\
(3)得点が正の数で、かつ、さいころを投げる回数が14回以下である条件のもとで、\\
得点が49点となる条件付き確率はl=\boxed{\ \ ソ\ \ }とおいて\frac{1}{6^l(6^{10}-\boxed{\ \ タ\ \ })}となる。\\
\end{eqnarray}

2021慶應義塾大学経済学部過去問
この動画を見る 

福田の数学〜早稲田大学2021年理工学部第4問〜場合の数と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ $n,k$を$2$以上の自然数とする。$n$個の箱の中に$k$個の玉を無作為に入れ、各箱に入った玉の
個数を数える。その最大値と最小値の差がlとなる確率を$P_l(0 \leqq l \leqq k)$とする。
(1)$n=2,$ $k=3$のとき、$P_0,P_1,P_2,P_3$を求めよ。

(2)$n \geqq 2,$ $k=2$のとき、$P_0,P_1,P_2$を求めよ。

(3)$n \geqq 3,$ $k=3$のとき、$P_0,P_1,P_2,P_3$を求めよ。

2021早稲田大学理工学部過去問
この動画を見る 

【見るだけで点数UP】共通テスト数学のコツ

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学のコツ(伸ばしやすい単元)紹介動画です
この動画を見る 

【高校数学】3分でじゅず順列~例題付き~ 1-8【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
色の異なる6個の玉を糸につないで首飾りにする方法は何通りあるか。

色の異なる7個の玉をつないで輪を作る方法は何通りあるか。

もし、円形に並べる方法なら何通りあるか。
この動画を見る 
PAGE TOP