問題文全文(内容文):
${\Large\boxed{1}}$(2)円Cに内接する四角形PQRSにおいて、対角線PRは円Cの中心Oを通る。
また、各辺の長さは、$PQ=1, QR=8, RS=4, SP=7$であり、
角Pの大きさを$\theta$とする。ただし、$0 \lt \theta \lt \pi$とする。
このとき円Cの直径は$\boxed{イ},\cos\theta=\boxed{ウ}$である。
2021立教大学経済学部過去問
${\Large\boxed{1}}$(2)円Cに内接する四角形PQRSにおいて、対角線PRは円Cの中心Oを通る。
また、各辺の長さは、$PQ=1, QR=8, RS=4, SP=7$であり、
角Pの大きさを$\theta$とする。ただし、$0 \lt \theta \lt \pi$とする。
このとき円Cの直径は$\boxed{イ},\cos\theta=\boxed{ウ}$である。
2021立教大学経済学部過去問
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)円Cに内接する四角形PQRSにおいて、対角線PRは円Cの中心Oを通る。
また、各辺の長さは、$PQ=1, QR=8, RS=4, SP=7$であり、
角Pの大きさを$\theta$とする。ただし、$0 \lt \theta \lt \pi$とする。
このとき円Cの直径は$\boxed{イ},\cos\theta=\boxed{ウ}$である。
2021立教大学経済学部過去問
${\Large\boxed{1}}$(2)円Cに内接する四角形PQRSにおいて、対角線PRは円Cの中心Oを通る。
また、各辺の長さは、$PQ=1, QR=8, RS=4, SP=7$であり、
角Pの大きさを$\theta$とする。ただし、$0 \lt \theta \lt \pi$とする。
このとき円Cの直径は$\boxed{イ},\cos\theta=\boxed{ウ}$である。
2021立教大学経済学部過去問
投稿日:2021.10.11