大学入試問題#180 秋田県立大学(2004) 定積分 ウォリス積分② - 質問解決D.B.(データベース)

大学入試問題#180 秋田県立大学(2004) 定積分 ウォリス積分②

問題文全文(内容文):
$\displaystyle \int_{0}^{1}(1-x^2)^4\ dx$

出典:2004年秋田県立大学 入試問題
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}(1-x^2)^4\ dx$

出典:2004年秋田県立大学 入試問題
投稿日:2022.04.26

<関連動画>

大学入試問題#512「受験生の心は折れる」 浜松医科大学(2015) #区分求積法

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } (\displaystyle \frac{(3n^2+1^2)(3n^2+2^2)・・・(3n^2+n^2)}{(n^2+1^2)(n^2+2^2)・・・(n^2+n^2)})^{\frac{1}{n}}$

出典:2015年浜松医科大学 入試問題
この動画を見る 

#上智大学(2016) #ウォリス積分 #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#上智大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} (\sin^3x+\cos^3x) dx$

出典:2016年上智大学
この動画を見る 

大学入試問題#398「あえての正面突破!!」 京都教育大学2009 #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} log(1+\tan\ x) dx$

出典:2009年京都教育大学 入試問題
この動画を見る 

16東京都教員採用試験(数学:3番 微積)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
3⃣$C_1 : y=ax^2,C_2:y=logx$
$C_1$と$C_2$は共通に接線lをもつ
(1)定数aの値
(2)接線lの方程式
(3)$C_1$,l,y軸で囲まれた面積S
この動画を見る 

【高校数学】毎日積分77日目~47都道府県制覇への道~【⑳和歌山】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#和歌山大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【和歌山大学 2023】
次の問いに答えよ。ただし、$\sqrt{3}>1.73$である。
(1)$ x=tant$の時,$\displaystyle \frac{1}{1+x^2}$を$cost$を用いて表せ。
(2) 定積分$\displaystyle \int_0^{\frac{1}{3}}\frac{1}{1+x^2}dx$を求めよ。
(3) すべての実数$x$に対して、$\displaystyle \frac{1}{1+x^2}≧1+ax^2$が成り立つような実数$a$の最大値を求めよ。
(4) 円周率は$3.07$より大きいことを示せ。
この動画を見る 
PAGE TOP