【受験対策】 数学-文章題② - 質問解決D.B.(データベース)

【受験対策】  数学-文章題②

問題文全文(内容文):
①ある中学校の昨年度の生徒数は男女合わせて200人で、このうち男子がx人でした。
この中学校の今年度の生徒数は、昨年度に比べて、男子は10%増え、女子が10%減りました。
この中学校の生徒数は男女合わせて何人?
xを用いた最も簡単な式で表そう。

②$\sqrt{ 25-n }+3\sqrt{ n }$が整数となる自然数nをすべて求めよう。

③受験日までに毎日8問ずつ解くとちょうど解き終わる問題集があります。
ユリさんは、この問題集を難しい問題だけ選んでやることにしたので、最初のx日は3問ずつ解き、残りのy日は5問ずつ解きました。
この問題集のうち、ユリさんがまだ解いていない問題数を、x,yを用いた最も簡単な式で表そう。
単元: #数Ⅰ#数A#数と式#整数の性質#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①ある中学校の昨年度の生徒数は男女合わせて200人で、このうち男子がx人でした。
この中学校の今年度の生徒数は、昨年度に比べて、男子は10%増え、女子が10%減りました。
この中学校の生徒数は男女合わせて何人?
xを用いた最も簡単な式で表そう。

②$\sqrt{ 25-n }+3\sqrt{ n }$が整数となる自然数nをすべて求めよう。

③受験日までに毎日8問ずつ解くとちょうど解き終わる問題集があります。
ユリさんは、この問題集を難しい問題だけ選んでやることにしたので、最初のx日は3問ずつ解き、残りのy日は5問ずつ解きました。
この問題集のうち、ユリさんがまだ解いていない問題数を、x,yを用いた最も簡単な式で表そう。
投稿日:2014.01.15

<関連動画>

光文社新書「中学の知識でオイラーの公式がわかる」Vol.3余弦定理

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
余弦定理解説動画です
この動画を見る 

慈恵医大 座標のフリした整数問題

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
Oを原点とする座標平面において,第一象限に属する点P$(\sqrt2 r,\sqrt3 s)$(r,sは有理数)をとるとき,線分OPの長さは無理数となることを示せ.

慈恵医大過去問
この動画を見る 

灘高校の因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
展開せよ
$(a^2+b^2-c^2)^2$
因数分解せよ
$a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2$

灘高等学校
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第1問〜絶対値の付いた2次関数の最小値(難)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$0 \leqq a \leqq b \leqq 1$を満たすa,bに対し、関数
$f(x)=|x(x-1)|+|(x-a)(x-b)|$
を考える。xが実数の範囲を動くとき、$f(x)$は最小値mをもつとする。
(1)$x \lt 0$および$x \gt 1$では$f(x) \gt m$となることを示せ。
(2)$m=f(0)$または$m=f(1)$であることを示せ。
(3)$a,b$が$0 \leqq a \leqq b \leqq 1$を満たして動くとき、mの最大値を求めよ。

2022北海道大学理系過去問
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第1問(3)〜四面体と四面体の共通部分の切り口の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(3)座標空間内の4点$(2,0,0),\ (-1,\sqrt3,0),\ (-1,-\sqrt3,0),\ (0,0,2)$を頂点と
する四面体をP、4点$(-2,0,1),\ (1,-\sqrt3,1),\ (1,\sqrt3,1),\ (0,0,-1)$を頂点
とする四面体をQとする。RをPとQの共通部分とする。Rを平面$z=\frac{1}{3}$で
切ったときの切り口の面積を求めよ。

2022早稲田大学教育学部過去問
この動画を見る 
PAGE TOP