大学入試問題#346「2種類の解法の紹介」 電気通信大学(2013) #定積分 #キングプロパティ - 質問解決D.B.(データベース)

大学入試問題#346「2種類の解法の紹介」 電気通信大学(2013) #定積分 #キングプロパティ

問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \displaystyle \frac{e^x}{e^x+e^{-x}} dx$

出典:2013年電気通信大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \displaystyle \frac{e^x}{e^x+e^{-x}} dx$

出典:2013年電気通信大学 入試問題
投稿日:2022.10.24

<関連動画>

大学入試問題#632「微分して積分するだけ」 埼玉大学(2017) #積分方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#埼玉大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)$:微分可能
$f(x)=x^2e^{-x}+\displaystyle \int_{0}^{x} e^{t-x}f(t)dt$を満たす$f(x)$を求めよ。

出典:2017年埼玉大学 入試問題
この動画を見る 

#会津大学 2020年 #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} \sqrt{ x }\ log\ x\ dx$

出典:2020年会津大学
この動画を見る 

【高校数学】毎日積分57日目~47都道府県制覇への道~【①沖縄】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#琉球大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a$を実数とし、$f(x)=xe^{-|x|}, g(x)=ax$とおく。次の問いに答えよ。
問1 $f(x)$の増減を調べ、$y=f(x)$のグラフの概形をかけ。ただし$\displaystyle \lim_{x\to \infty}xe^{-x}=0$は証明なしに用いてよい。
問2 $0<a<1$のとき、曲線$y=f(x)$と直線$y=g(x)$で囲まれた2つの部分の面積の和を求めよ。
【琉球大学 2023】
この動画を見る 

福田の数学〜筑波大学2023年理系第4問〜定積分と不等式と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#体積・表面積・回転体・水量・変化のグラフ#数学(高校生)#筑波大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ a, bを実数とし、$f(x)$=$x$+$a\sin x$, $g(x)$=$b\cos x$とする。
(1)定積分$\displaystyle\int_{-\pi}^{\pi}$$f(x)g(x)dx$ を求めよ。
(2)不等式$\displaystyle\int_{-\pi}^{\pi}$$\left\{f(x)+g(x)\right\}^2dx$≧$\displaystyle\int_{-\pi}^{\pi}$$\left\{f(x)\right\}^2dx$ が成り立つことを示せ。
(3)曲線$y$=|$f(x)$+$g(x)$|、2直線$x$=$-\pi$, $x$=$\pi$、および$x$軸で囲まれた図形を$x$軸の周りに1回転させてできる回転体の体積をVとする。このとき不等式
V≧$\displaystyle\frac{2}{3}r^2$$(r^2-6)$
が成り立つことを示せ。さらに、等号が成立するときのa, bを求めよ。

2023筑波大学理系過去問
この動画を見る 

#茨城大学2024#区分求積法_5#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n^{3}}\displaystyle \sum_{k=1}^n (n-k)^2$

出典:2024年茨城大学
この動画を見る 
PAGE TOP