数と式 式の展開②【化学のタカシーがていねいに解説】 - 質問解決D.B.(データベース)

数と式 式の展開②【化学のタカシーがていねいに解説】

問題文全文(内容文):
展開せよ
$(a+1)^3$  $(x+3y)^3$
$(2a-1)^3$  $(-3a+2b)^3$

展開せよ
$(a+5)(a^2-5a+25)$
$(3-a)(9+3a+a^2)$
$(2x+y)(4x^2-2xy+y^2)$
$(3a-2b)(9a^2+6ab+4b^2)$

計算せよ
$(x-1)(x-3)(x+1)(x+3)$    $(x+2)(x+5)(x-4)(x-1)$
$(a-b)(a+b)(a+b)(a+b)$     $(2x-y)^3(2x+y)^3$
$(a+b)^2(a-b)^2(a+ab+b)^2(a-ab+b)^2$
$(x+2)(x-2)(x^2+2x+4)(x^2-2x+4)$
$(a+b+c)^2+(a+b-c)^2+(b+c-a)^2+(c+a-b)^2$
チャプター:

0:02 展開【解説開始】 
1:22 (a+1)³ ,(x+3y)³  
3:16 (2a-1)³  
5:06  (-3a+2b)³  
8:28 (3-a)(9+3a+a²)  
8:53  (2x+y)(4x²-2xy+y²) ,(3a-2b)(9a²+6ab+4b²)
10:23 (x-1)(x-3)(x+1)(x+3)
14:36  (x+2)(x+5)(x-4)(x-1)
18:54 (a-b)(a+b)(a+b)(a+b)
21:16  (2x-y)³(2x+y)³
27:17 (a+b)²(a-b)²(a+ab+b)²(a-ab+b)²
30:30 (x+2)(x-2)(x²+2x+4)(x²-2x+4)
32:42 (a+b+c)²+(a+b-c)²+(b+c-a)²+(c+a-b)²

単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
展開せよ
$(a+1)^3$  $(x+3y)^3$
$(2a-1)^3$  $(-3a+2b)^3$

展開せよ
$(a+5)(a^2-5a+25)$
$(3-a)(9+3a+a^2)$
$(2x+y)(4x^2-2xy+y^2)$
$(3a-2b)(9a^2+6ab+4b^2)$

計算せよ
$(x-1)(x-3)(x+1)(x+3)$    $(x+2)(x+5)(x-4)(x-1)$
$(a-b)(a+b)(a+b)(a+b)$     $(2x-y)^3(2x+y)^3$
$(a+b)^2(a-b)^2(a+ab+b)^2(a-ab+b)^2$
$(x+2)(x-2)(x^2+2x+4)(x^2-2x+4)$
$(a+b+c)^2+(a+b-c)^2+(b+c-a)^2+(c+a-b)^2$
投稿日:2023.05.09

<関連動画>

【数Ⅰ】絶対値が2つある方程式【見た目より難しい!?丁寧に場合分けをしよう】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ \vert x+2 \vert + \vert 2x-3 \vert =6を解け.$
この動画を見る 

西暦"2023"を含む入試予想問題(その4)~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数と式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$N$の整数部分が$ N=\sqrt{2023+x}$とする.
整数$x$はいくつあるか.
この動画を見る 

この出し方知ってる?

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
二次関数$y=\frac{1}{2}x^2$上の2点A(-4, 8), B(2, 2)と原点Oを結んでできる三角形の面積を求めよ
この動画を見る 

数1の基本問題

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4^x+(2a^2-a+6)・2^x+2a^2+a-6=0$が実数解をもつaの範囲を求めよ.
この動画を見る 

【高校数学】1次不等式の利用~ただの文章題です~ 1-13 【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)Aさんの通う学校から自宅までの道のりは24kmである。
  この道のりを初めは時速4km,途中から時速3kmで歩いたら、
  所要時間は7時間以内であった。
  時速4kmで歩いた道のりはどれほどか。

(2)連続する3つの整数の和が37以上になるもののうち、
  その和が最小となる3つの数を求めよ。
この動画を見る 
PAGE TOP