【高校数学】 数Ⅰ-63 2次不等式② - 質問解決D.B.(データベース)

【高校数学】  数Ⅰ-63  2次不等式②

問題文全文(内容文):
①$x^2-4x+2 \leqq 0$
②$-2x^2-4x+5 \lt 0$
③$x^2-3+5\geqq-x-2$
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x^2-4x+2 \leqq 0$
②$-2x^2-4x+5 \lt 0$
③$x^2-3+5\geqq-x-2$
投稿日:2014.09.13

<関連動画>

【普通に難問?でも悪問…!】文字式:お茶の水女子大学附属高等学校~全国入試問題解法

単元: #数学(中学生)#中1数学#方程式#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)#お茶の水女子大学附属高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$次の式をcについて解きなさい。$
$\dfrac{a(c-d)}{c+d}+\dfrac{b(c+d)}{c-d}=a+b$
この動画を見る 

【数Ⅰ】【図形と計量】余弦定理応用4 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$△ABC$において,次のものを求めよ。
(1) $\sin A: \sin B:\sin C=5:8:7$ のとき,$\cos C,C$
(2) $(b+c):(c+a):(a+b)=4:5:6$のとき$A$
(3) $A:B:C=5:4:8$のとき $A, B, C, b:c$
この動画を見る 

【数Ⅰ】【図形と計量】空間の応用2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\rm PA=PB=PC=\sqrt5,AB=3,BC=3,CA=4$である三角錐PABCの体積を求めよ。
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第1問(4)〜角の二等分線と辺の長さの軽量

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(4)三角形$ABC$の$\angle A$の二等分線と辺$BC$との交点をDとする。
$AB=8,\ AC=3,\ AD=4$とするとき、

$BD:CD=\boxed{\ \ ソ\ \ }:\boxed{\ \ タ\ \ }$であり、
$BC=\frac{\boxed{\ \ チツ\ \ }\sqrt{\boxed{\ \ テ\ \ }}}{\boxed{\ \ ト\ \ }}$である。

2022明治大学全統過去問
この動画を見る 

ナイスな連立三元2次方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2-yz=1 \\\
y^2-zx=2\\\
z^2-xy=3
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP