【高校数学】京都大学の定積分の問題はとにかく基本に忠実に! - 質問解決D.B.(データベース)

【高校数学】京都大学の定積分の問題はとにかく基本に忠実に!

問題文全文(内容文):
【京都大学 2025】
次の定積分の値を求めよ。
$\displaystyle \int _0^\sqrt{3}\frac{x\sqrt{x^2+1}+2x^3+1}{x^2+1}dx$
チャプター:

0:00 オープニング
0:19 式の形について
0:59 計算開始
1:43 次数下げ
3:10 分けて計算
3:23 置換積分法
4:24 エンディング

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【京都大学 2025】
次の定積分の値を求めよ。
$\displaystyle \int _0^\sqrt{3}\frac{x\sqrt{x^2+1}+2x^3+1}{x^2+1}dx$
投稿日:2025.02.28

<関連動画>

【高校数学】毎日積分78日目~47都道府県制覇への道~【㉑奈良】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【奈良教育大学 2023】
以下の問いに答えよ。
(1) 次の関数の導関数を求めよ。ただし、対数は自然対数とする。
(i) $log|x+\sqrt{1+x^2}|$
(ii) $\displaystyle \frac{1}{2}(x\sqrt{1+x^2}+log|x+\sqrt{1+x^2}|)$
(2)次の等式を示せ。
$\displaystyle \int_0^{\frac{π}{2}}\frac{cos^3x}{\sqrt{1+sin^2x}}dx=\frac{1}{2}\{3log(1+\sqrt{2})-\sqrt{2}\}$
この動画を見る 

大学入試問題#463「ええ問題や~~」 信州大学 理・医 (2016) #積分の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} (1-x^2)^n dx$
$=\displaystyle \frac{4^n(n!)^2}{(2n+1)!}$を示せ

出典:2016年信州大学医学部 入試問題
この動画を見る 

早稲田大(政)方程式の実数解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$-90^{ \circ } \lt \theta \lt 90^{ \circ }$
$(\sin \theta)x^2+2(\cos2\theta)x+cos2\theta=0$が少なくとも1つの実数解をもつような$\theta$の範囲を求めよ

出典:2001年早稲田大学 政治経済学部 過去問
この動画を見る 

【数学】横浜国立大2018年度(理系前期)第1問の解説

アイキャッチ画像
単元: #学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大(理系)2018年度前期入試
第1問
(1) 定積分$\displaystyle \int_{0}^{\frac{\pi}{3}}\dfrac{x}{\cos(x)^2} dx$を求めよ。
(2) $\dfrac{-\pi}{2}\lt x\lt \dfrac{\pi}{2}$で定義された関数f(x)が
   $f(x)\cos(x)^2 =\pi-\dfrac{x}{\log2}\displaystyle \int_{0}^{\frac{\pi}{3}f(t)dt$
をみたすとき、f(x)を求めよ。
この動画を見る 

数学「大学入試良問集」【19−5定積分で表された関数】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#神戸商船大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
(1)
次の定積分の値を求めよ。
 (ⅰ)$\displaystyle \int_{0}^{\pi}\sin\ x\ dx$
 (ⅱ)$\displaystyle \int_{0}^{\pi}e^{2x}\sin\ x\ dx$

(2)
次の等式をみたす$f(x)$を求めよ。
$f(x)=e^{2x}+\displaystyle \int_{0}^{\pi}f(t)\sin\ t\ dt$
この動画を見る 
PAGE TOP