20年5月数学検定準1級1次試験(円の方程式) - 質問解決D.B.(データベース)

20年5月数学検定準1級1次試験(円の方程式)

問題文全文(内容文):
2⃣円$C_1$の中心は(-6,2)で直線$l:3x-4y+1=0$に接する。
このとき円$C_1$がx軸から切り取る線分の長さl'を求めよ。
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#図形と方程式#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
2⃣円$C_1$の中心は(-6,2)で直線$l:3x-4y+1=0$に接する。
このとき円$C_1$がx軸から切り取る線分の長さl'を求めよ。
投稿日:2020.06.03

<関連動画>

練習問題1(数検準1級、教員採用試験 レベル)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#その他#数学検定#数学検定準1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
(1)$\int \frac{x}{cos^2x} dx$
(2)$\int \frac{x}{sin^2x} dx$
この動画を見る 

数検準1級2次(1番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$ $0\lt \alpha,\beta,\varUpsilon \lt \dfrac{\pi}{2}$
$\tan \alpha=\dfrac{1}{2},\tan\beta=\dfrac{1}{5},\tan\varUpsilon=\dfrac{1}{8}$のとき,
$\sin(\alpha+\beta+\varUpsilon)$と,$\cos(\alpha+\beta+\varUpsilon)$
の大小を比較せよ.
この動画を見る 

#数検準1級1次 #7

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} (1+log x)^2$ $dx$

出典:数検準1級1次
この動画を見る 

数検準1級2次過去問【2020年12月】7番:微積 良問

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{7}\ f(x)=\dfrac{\sin x+a}{x}$ $(x \gt 0)$は$0\lt x\lt 2\pi$で極値をもつ.

(1)$a$の値の範囲を求めよ.
(2)$f(x)$が$o\lt x\lt 2\pi$で、極大値$\dfrac{1}{2}$をもつとき,$a$の値を求めよ.
この動画を見る 

#12数検1級1次過去問 極限(マクローリン展開)Σn^2/n!

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#数列の極限#関数の極限#数学検定#数学検定準1級#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
$\displaystyle \sum_{n=1}^{\infty}\dfrac{n^2}{n!}$を求めよ.
この動画を見る 
PAGE TOP