大学入試問題#199 東京都市大学(2016) 定積分 - 質問解決D.B.(データベース)

大学入試問題#199 東京都市大学(2016) 定積分

問題文全文(内容文):
$\displaystyle \int_{2}^{3}\displaystyle \frac{x^3-1}{x^2-1}\ dx$

出典:2016年東京都市大学 入試問題
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{3}\displaystyle \frac{x^3-1}{x^2-1}\ dx$

出典:2016年東京都市大学 入試問題
投稿日:2022.05.16

<関連動画>

大学入試問題#361「作成時間がありませんでした。」 横浜国立大学(2014) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e}\displaystyle \frac{log\ x}{x^2}dx$

出典:2014年横浜国立大学 入試問題
この動画を見る 

数学「大学入試良問集」【19−5定積分で表された関数】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#神戸商船大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
(1)
次の定積分の値を求めよ。
 (ⅰ)$\displaystyle \int_{0}^{\pi}\sin\ x\ dx$
 (ⅱ)$\displaystyle \int_{0}^{\pi}e^{2x}\sin\ x\ dx$

(2)
次の等式をみたす$f(x)$を求めよ。
$f(x)=e^{2x}+\displaystyle \int_{0}^{\pi}f(t)\sin\ t\ dt$
この動画を見る 

#会津大学 2023年 #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{1}{2}}^{1} x^{-2}e^{\frac{1}{x}} dx$

出典:2023年会津大学
この動画を見る 

大学入試問題#151 東北大学2020 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{dx}{(1+x^2)^3}$を計算せよ。

出典:2020年東北大学 入試問題
この動画を見る 

福田の数学〜北里大学2021年医学部第1問(4)〜定積分で表された関数と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(4)関数f(x)は微分可能であり、すべての実数xについて
$f(x)=e^{2x+1}+4\int_0^xf(t)dt$
を満たすとする。関数$g(x)$を$g(x)=e^{-4x}f(x)$により定めるとき,
$g'(x)=\boxed{シ}$であり、$f(x)=\boxed{ス}$である。また、曲線$y=f(x)$と
x軸およびy軸で囲まれた図形をx軸のまわりに1回転してできる
回転体の体積は$\boxed{セ}$である。

2021北里大学医学部過去問
\end{eqnarray}
この動画を見る 
PAGE TOP