福田の数学〜慶應義塾大学2022年経済学部第5問〜指数対数の性質と格子点と2次関数の最大 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年経済学部第5問〜指数対数の性質と格子点と2次関数の最大

問題文全文(内容文):
${\Large\boxed{5}}$aを2以上の整数、pを整数とし、$s=2^{2p+1}$とおく。実数$x,y$が等式
$2^{a+1}\log_23^x+2x\log_2(\frac{1}{3})^x=\log_s9^y$
を満たすとき、yをxの関数として表したものを$y=f(x)$とする。
(1)対数の記号を使わずに、$f(x)$を$a,p$およびxを用いて表せ。
(2)$a=2,\ p=0$とする。このとき、$n \leqq f(m)$を満たし、かつ、$m+n$が正となる
ような整数の組(m,n)の個数を求めよ。
(3)$y=f(x)(0 \leqq x \leqq 2^{a+1})$の最大値が$2^{3a}$以下となるような整数pの
最大値と最小値を、それぞれaを用いて表せ。

2022慶應義塾大学経済学部過去問
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$aを2以上の整数、pを整数とし、$s=2^{2p+1}$とおく。実数$x,y$が等式
$2^{a+1}\log_23^x+2x\log_2(\frac{1}{3})^x=\log_s9^y$
を満たすとき、yをxの関数として表したものを$y=f(x)$とする。
(1)対数の記号を使わずに、$f(x)$を$a,p$およびxを用いて表せ。
(2)$a=2,\ p=0$とする。このとき、$n \leqq f(m)$を満たし、かつ、$m+n$が正となる
ような整数の組(m,n)の個数を求めよ。
(3)$y=f(x)(0 \leqq x \leqq 2^{a+1})$の最大値が$2^{3a}$以下となるような整数pの
最大値と最小値を、それぞれaを用いて表せ。

2022慶應義塾大学経済学部過去問
投稿日:2022.06.24

<関連動画>

円が通過した面積は?文星芸術大附属(栃木県)

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
半径1cmの円が滑らないように△ABCの周りを1周する
円が通過した部分の面積は?
*図は動画内参照
文星芸術大学附属高等学校(改)
この動画を見る 

小数第2022位の数は?!

アイキャッチ画像
単元: #数Ⅰ#数と式#2次関数#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ (6+\sqrt{37})^{2023}$の小数第$2022$位数は?
この動画を見る 

春は因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを因数分解せよ.
(1)$ x^2+y^2-x^2y^2-4xy-1 $
(2)$ x^2-y^2-2x+6y-8 $
この動画を見る 

福田のおもしろ数学523〜命題の真偽の判定

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$x+y$と$x+y^2$がともに有理数であるとき

$x$と$y$はともに有理数であると言えるか?

$x+y$と$x+y^2$と$x+y^3$がすべて

有理数であるとき

$x$と$y$はともに有理数であると言えるか?
     
この動画を見る 

【高校数学】数Ⅰ-37 2次関数③(軸と頂点編)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の2次関数の軸と頂点を求めよう。
①$y=3(x--1)^2-4$
②$y=2x^2+7$
この動画を見る 
PAGE TOP