問題文全文(内容文):
高校受験対策・図形32
Q
右の図のような、$∠ACB=90°$の直角三角形がある。
$∠ABC$の二等分線と辺$AC$との交点を$D$とする。
点$C$から辺$AB$に垂線をひき、その交点を$E$とし、線分$CE$と線$BD$との交点を$F$とする。
また点から辺$BC$に垂線をひき、その交点を$G$とし、線分$EG$と線分$BD$との交点を$H$とする。
このとき、次の各問いに答えなさい。
①$\triangle BEH \backsim \triangle BAD$であることを証明せよ。
②点$E$から線分$HF$に垂線をひき、その交点を$I$とし、 直線$EI$と辺$BC$との交点を$J$とする。
このとき$EH=FJ$であることを証明せよ。
高校受験対策・図形32
Q
右の図のような、$∠ACB=90°$の直角三角形がある。
$∠ABC$の二等分線と辺$AC$との交点を$D$とする。
点$C$から辺$AB$に垂線をひき、その交点を$E$とし、線分$CE$と線$BD$との交点を$F$とする。
また点から辺$BC$に垂線をひき、その交点を$G$とし、線分$EG$と線分$BD$との交点を$H$とする。
このとき、次の各問いに答えなさい。
①$\triangle BEH \backsim \triangle BAD$であることを証明せよ。
②点$E$から線分$HF$に垂線をひき、その交点を$I$とし、 直線$EI$と辺$BC$との交点を$J$とする。
このとき$EH=FJ$であることを証明せよ。
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形32
Q
右の図のような、$∠ACB=90°$の直角三角形がある。
$∠ABC$の二等分線と辺$AC$との交点を$D$とする。
点$C$から辺$AB$に垂線をひき、その交点を$E$とし、線分$CE$と線$BD$との交点を$F$とする。
また点から辺$BC$に垂線をひき、その交点を$G$とし、線分$EG$と線分$BD$との交点を$H$とする。
このとき、次の各問いに答えなさい。
①$\triangle BEH \backsim \triangle BAD$であることを証明せよ。
②点$E$から線分$HF$に垂線をひき、その交点を$I$とし、 直線$EI$と辺$BC$との交点を$J$とする。
このとき$EH=FJ$であることを証明せよ。
高校受験対策・図形32
Q
右の図のような、$∠ACB=90°$の直角三角形がある。
$∠ABC$の二等分線と辺$AC$との交点を$D$とする。
点$C$から辺$AB$に垂線をひき、その交点を$E$とし、線分$CE$と線$BD$との交点を$F$とする。
また点から辺$BC$に垂線をひき、その交点を$G$とし、線分$EG$と線分$BD$との交点を$H$とする。
このとき、次の各問いに答えなさい。
①$\triangle BEH \backsim \triangle BAD$であることを証明せよ。
②点$E$から線分$HF$に垂線をひき、その交点を$I$とし、 直線$EI$と辺$BC$との交点を$J$とする。
このとき$EH=FJ$であることを証明せよ。
投稿日:2020.01.05