東京電機大 複素数のべき乗 - 質問解決D.B.(データベース)

東京電機大 複素数のべき乗

問題文全文(内容文):
$(1+2i)^n=x_n+y_ni$
(1)$x^2_n+y^2_n$を求めよ.
(2)$x_{n+2}$を$x_{n+1}$と$x_n$で表せ.
(3)$x_n$と$y_n$の最大公約数を求めよ.

東京電機大過去問
単元: #複素数と方程式#複素数#指数関数#数列
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1+2i)^n=x_n+y_ni$
(1)$x^2_n+y^2_n$を求めよ.
(2)$x_{n+2}$を$x_{n+1}$と$x_n$で表せ.
(3)$x_n$と$y_n$の最大公約数を求めよ.

東京電機大過去問
投稿日:2022.04.27

<関連動画>

横浜市(医)複素数の2次方程式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'00横浜市立大学過去問題
虚部が正の複素数Zで$iZ^2+2iZ+\frac{1}{2}+i=0$をみたすZを
$Z=a+bi$(a,b実数.b>0)の形で求めよ。
この動画を見る 

慶応義塾大 3次方程式(補)共役の複素数は解となることを示せ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a$実数
$x^3+ax^2-3x+10=0$の1つの解は$x=2-i$
$a$の値と実数解を求めよ。

※$n$次方程式$(n \geqq 4)$で$m+ni(n \neq 0)$が解なら$m-ni$も解であることを示せ

出典:2009年慶應義塾 過去問
この動画を見る 

複素関数論⑪ 三角形の周の複素積分 高専数学*3(3)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
複素関数論⑪ 三角形の周の複素積分を解説していきます.
この動画を見る 

複素関数論③(複素数で表される図形) *16(1),(2) 高専数学

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$w=\dfrac{1}{Z-i}$
$Z \in $が次の条件をみたすとき,$w$はどんな図形?

(1)$ \vert Z \vert =\sqrt3 $
(2)$ \vert Z \vert=1$
この動画を見る 

虚数係数の二次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1-i)x^2+(3k-6i)x+8-5ki+2i=0$が実数解をもつような整数kとそのときの解を求めよ.

愛知大過去問
この動画を見る 
PAGE TOP