【数Ⅲ-167】積分と面積③(三角関数編) - 質問解決D.B.(データベース)

【数Ⅲ-167】積分と面積③(三角関数編)

問題文全文(内容文):
数Ⅲ(積分と面積③・三角関数編)

Q
$0≦x≦\pi$において、次の2曲線で囲まれた部分の面積を求めよ。

①$y=\sin x$、$y=\cos 2x$
➁$y=\sin x$、$y=\sin 3x$
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分と面積③・三角関数編)

Q
$0≦x≦\pi$において、次の2曲線で囲まれた部分の面積を求めよ。

①$y=\sin x$、$y=\cos 2x$
➁$y=\sin x$、$y=\sin 3x$
投稿日:2020.08.14

<関連動画>

福田の数学〜明治大学2024理工学部第2問〜三角関数の増減と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=\sin{3x}-\sqrt3\cos{2x}$とし、座標平面上の曲線$y=f(x)$を$C$とする。
(1) 点$(0,f(0))$における曲線$C$の接線の方程式は$y=\boxed{あ}$である。
(2) $t$についての整式$g(t)$で、$f'(x)=g(\sin x)\cos x$が成り立つものを求めると、$g(t)=\boxed{い}$である。
(3) $x>0$の範囲で、$f'(x)=0$となる$x$の値を小さい順に$x_1,x_2,x_3,\cdots$とすると、$x_1=\boxed{う},x_2=\boxed{え},x_3=\boxed{お}$である。
(4) $0\leqq x\leqq \pi$の範囲での$f(x)$の最大値は$\boxed{か}$、最小値は$\boxed{き}$である。
(5) (4)で定めた$x_1$と$x_3$に対して、2点$(x_1,f(x_1)),(x_3,f(x_3))$を通る直線を$l$とする。このとき、$x_1\leqq x\leqq x_3$の範囲において直線$l$と曲線$C$で囲まれた部分の面積は$\boxed{く}$である。
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第3問(2)〜面積と回転体の体積

アイキャッチ画像
単元: #微分とその応用#積分とその応用#接線と法線・平均値の定理#面積・体積・長さ・速度#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$(2)曲線$y=\log x$を$C$とする。$t \gt e$として、C上の点$P(t,\ \log t)$におけるCの
接線lとx軸との交点をQ、y軸との交点をRとおく。また、$(0,\ \log t)$で表される
点を$S$とおく。点Qのx座標は$\boxed{\ \ ウ\ \ }$であり、点Rのy座標は$\boxed{\ \ エ\ \ }$である。
座標平面の原点をOとすると、$a \gt 0$のとき、線分ORと線分RSの長さの比が
$a:1$となるのは、$t=\boxed{\ \ オ\ \ }$のときである。したがって、三角形OQRの面積が
三角形SPRの面積の9倍となるのは、$t=\boxed{\ \ カ\ \ }$のときである。
曲線Cとx軸、および直線$x=\boxed{\ \ カ\ \ }$で囲まれた図形をy軸のまわりに一回転
させてできる回転体の体積は$\boxed{\ \ キ\ \ }\pi$となる。

$\boxed{\ \ ウ\ \ }\ 、\boxed{\ \ エ\ \ }$の解答群
$⓪1-\log t  ①1-2\log t  ②\log t-1  ③2\log t-1  ④t(1-\log t)$
$⑤t(1-\log t)  ⑥t(\log t-1)  ⑦t(2\log t-1)  ⑧2t(1-\log t)  ⑨2t(\log t-1)$

$\boxed{\ \ オ\ \ }$の解答群
$⓪1-\log t  ①1-2\log t  ②\log t-1  ③2\log t-1  ④t(1-\log t)$
$⑤t(1-2\log t)  ⑥t(\log t-1)  ⑦t(2\log t-1)  ⑧2t(1-\log t)  ⑨2t(\log t-1)$

$\boxed{\ \ カ\ \ }\ 、\boxed{\ \ キ\ \ }$の解答群
$⓪\ e^4  ①\ e^8  ②\ \frac{e^4-1}{2}  ③\ \frac{e^8-1}{2}  ④\ \frac{5e^4-1}{2}$
$⑤\ \frac{9e^8-1}{2}  ⑥\ \frac{3e^4+1}{2}  ⑦\ \frac{7e^8+1}{2}  ⑧4e^8-e^4+1  ⑨3e^8+1$

2021明治大学全統過去問
この動画を見る 

【高校数学】毎日積分24日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^πx^2cos^2xdx$
これを解け.
この動画を見る 

福田の数学〜青山学院大学2024理工学部第5問〜関数の増減と無限級数の収束発散の判定

アイキャッチ画像
単元: #関数と極限#微分とその応用#積分とその応用#数列の極限#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
$(1)$ 関数 $\displaystyle{y=\frac{x}{x^2+1}}$ の増減、極値、グラフの凹凸および変曲点を調べて、そのグラフを描け。
$(2)$ $k$ を自然数とする。曲線 $\displaystyle{y=\frac{x}{x^2+1}}$ と $x$ 軸および2直線 $x=k$, $x=k+1$ で囲まれた図形の面積を $k$ を用いて表せ。
$(3)$ 無限級数
\begin{equation*}
\frac{1}{1^2+1}+\frac{2}{2^2+1}+\frac{3}{3^2+1}+\cdots+\frac{n}{n^2+1}+\cdots
\end{equation*}
の収束、発散を調べよ。
この動画を見る 

大学入試問題#559「解法色々」 筑波大学(2020) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \sin^2x\ \cos2x\ dx$

出典:2020年筑波大学 入試問題
この動画を見る 
PAGE TOP