福田の数学〜青山学院大学2023年理工学部第3問〜放物線上の4点で作る四角形の面積の最大 - 質問解決D.B.(データベース)

福田の数学〜青山学院大学2023年理工学部第3問〜放物線上の4点で作る四角形の面積の最大

問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とするxy平面上の放物線
$y$=$-x^2$+$4x$
を$C$とする。また、放物線$C$上に点A(4,0), P($p$, $-p^2+4p$), Q($q$, $-q^2+4q$)をとる。ただし、0<$p$<$q$<4 とする。
(1)放物線$C$の接線のうち、直線APと傾きが等しいものを$l$とする。接線$l$の方程式を求めよ。
(2)点Pを固定する。点Qが$p$<$q$<4 を満たしながら動くとき、四角形OAQPの面積の最大値を$p$を用いて表せ。
(3)(2)で求めた四角形OAQPの面積の最大値を$S(p)$とおく。0<$p$<4 のとき、
関数$S(p)$の最大値を求めよ。
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とするxy平面上の放物線
$y$=$-x^2$+$4x$
を$C$とする。また、放物線$C$上に点A(4,0), P($p$, $-p^2+4p$), Q($q$, $-q^2+4q$)をとる。ただし、0<$p$<$q$<4 とする。
(1)放物線$C$の接線のうち、直線APと傾きが等しいものを$l$とする。接線$l$の方程式を求めよ。
(2)点Pを固定する。点Qが$p$<$q$<4 を満たしながら動くとき、四角形OAQPの面積の最大値を$p$を用いて表せ。
(3)(2)で求めた四角形OAQPの面積の最大値を$S(p)$とおく。0<$p$<4 のとき、
関数$S(p)$の最大値を求めよ。
投稿日:2023.09.04

<関連動画>

福田のおもしろ数学364〜2次の不定方程式の整数解が無数に存在することの証明

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$x^2+y^2+z^2=(x-y)(y-z)(z-x)$ を満たす整数の組 $(x,y,z)$ は無数に存在することを証明せよ。
この動画を見る 

福田の数学〜早稲田大学2023年教育学部第1問(2)〜袋から球を取り出す確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)袋の中に赤玉5個と白玉5個が入っている。次の規則に従って袋から玉を無作為に取り出す。
ステップ1. 袋から玉を3個取り出す。
ステップ2. ステップ1で取り出した玉の中に含まれている赤玉の数と同じ数の玉を袋から取り出す。

このとき、2回取り出した玉の中で赤玉が合計3個となる事象の確率を求めよ。
ただし、ステップ1の後、取り出された玉を袋に戻さない。
この動画を見る 

【高校数学】円順列例題2題~とりあえずこれだけ~ 1-7.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
6等分した円の各部分を6色の絵の具をすべて使って塗り分ける方法は何通りあるか。


2⃣
(1)男子2人、女子8人が円形のテーブルの周りに並ぶ
  (ア)男子が向かい合う並び方は何通りあるか
  (イ)男子が隣り合う並び方は何通りあるか

(2)9人のうち5人を選んで円形に並べる方法は何通りあるか
この動画を見る 

角度を求める C

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x=?$
*図は動画内参照
この動画を見る 

【高校数学】重複順列の例題を一緒に解こう~これだけはできて~ 1-9.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
(1) 5題の問題に○、×で答えるとき、○×のつけ方は何通りあるか。

(2) 3個の数字0,1,2を重複を許して用いてできる5桁の整数は何個か。

(3) A,B 2つの箱に異なる10個の玉を入れる方法は何通りあるか。
  箱の中に少なくとも1個の玉は入れるものとする。

-----------------

2⃣
(1) 8人を2つの部屋A,Bに入れる方法は何通りあるか。
  ただし、1人も入らない部屋があってもよいものとする。

(2) 8人を2つのグループA, Bに分ける方法は何通りあるか。

(3) 8人を2つのグループに分ける方法は何通りあるか。
この動画を見る 
PAGE TOP