福田の数学〜青山学院大学2023年理工学部第3問〜放物線上の4点で作る四角形の面積の最大 - 質問解決D.B.(データベース)

福田の数学〜青山学院大学2023年理工学部第3問〜放物線上の4点で作る四角形の面積の最大

問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とするxy平面上の放物線
$y$=$-x^2$+$4x$
を$C$とする。また、放物線$C$上に点A(4,0), P($p$, $-p^2+4p$), Q($q$, $-q^2+4q$)をとる。ただし、0<$p$<$q$<4 とする。
(1)放物線$C$の接線のうち、直線APと傾きが等しいものを$l$とする。接線$l$の方程式を求めよ。
(2)点Pを固定する。点Qが$p$<$q$<4 を満たしながら動くとき、四角形OAQPの面積の最大値を$p$を用いて表せ。
(3)(2)で求めた四角形OAQPの面積の最大値を$S(p)$とおく。0<$p$<4 のとき、
関数$S(p)$の最大値を求めよ。
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とするxy平面上の放物線
$y$=$-x^2$+$4x$
を$C$とする。また、放物線$C$上に点A(4,0), P($p$, $-p^2+4p$), Q($q$, $-q^2+4q$)をとる。ただし、0<$p$<$q$<4 とする。
(1)放物線$C$の接線のうち、直線APと傾きが等しいものを$l$とする。接線$l$の方程式を求めよ。
(2)点Pを固定する。点Qが$p$<$q$<4 を満たしながら動くとき、四角形OAQPの面積の最大値を$p$を用いて表せ。
(3)(2)で求めた四角形OAQPの面積の最大値を$S(p)$とおく。0<$p$<4 のとき、
関数$S(p)$の最大値を求めよ。
投稿日:2023.09.04

<関連動画>

福田の数学〜東京大学2023年理系第6問〜線分の先端の可動範囲と関節を加えたときの可動範囲(PART1)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ Oを原点とする座標空間において、不等式|x|≦1, |y|≦1, |z|≦1の表す立方体を考える。その立方体の表面のうち、z<1を満たす部分をSとする。
以下、座標空間内の2点A,Bが一致するとき、線分ABは点Aを表すものとし、その長さを0と定める。
(1)座標空間内の点Pが次の条件(i),(ii)をともに満たすとき、点Pが動きうる範囲Vの体積を求めよ。
(i)OP≦$\sqrt 3$
(ii)線分OPとSは、共有点をもたないか、点Pのみを共有点にもつ。
(2)座標空間内の点Nと点Pが次の条件(iii),(iv),(v)をすべて満たすとき、点Pが動きうる範囲Wの体積を求めよ。必要ならば、$\sin\alpha$=$\frac{1}{\sqrt 3}$を満たす実数α(0<α<$\frac{\pi}{2}$)を用いてよい。
(iii)ON+NP≦$\sqrt 3$
(iv)線分ONとSは共有点を持たない。
(v)線分NPとSは、共有点を持たないか、点Pのみを共有点を持つ。

2023東京大学理系過去問
この動画を見る 

ピカチュウ割と話せる説

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ピカチュウ割と話せる説についてお話しています。
この動画を見る 

教え子に授業させてみた

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2a^2+(8-b)a-4b=2021$
正の整数a,bの組(a,b)をすべて求めよ。
この動画を見る 

気付けば一瞬!?立方体の中の三角形の面積

アイキャッチ画像
単元: #数A#図形の性質#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
*M,N は各辺の中点
△LMN=?
*図は動画内参照
この動画を見る 

【高校数学】 数A-57 作図①

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\triangle ABC$の内接円を作図しよう.

②線分$AB$を斜辺とし,他の1辺の長さが$\dfrac{1}{2}AB$である
直角三角形を作図しよう.

図は動画内参照
この動画を見る 
PAGE TOP