【高校数学】 数Ⅰ-55 2次方程式② - 質問解決D.B.(データベース)

【高校数学】  数Ⅰ-55  2次方程式②

問題文全文(内容文):
①$2x^2-5x+1=0$
②$x^2+2x-4=0$
③$\sqrt{ 2 }x^2-4x+2\sqrt{ 2 }=0$
④$(x+2)^2+4(x+2)-1=0$
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$2x^2-5x+1=0$
②$x^2+2x-4=0$
③$\sqrt{ 2 }x^2-4x+2\sqrt{ 2 }=0$
④$(x+2)^2+4(x+2)-1=0$
投稿日:2014.08.29

<関連動画>

福田の数学〜虚数係数の2次方程式の解き方〜明治大学2023年全学部統一ⅠⅡAB第1問(2)〜

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$
(2)$k$を実数とする。$x$についての方程式
$x^2$-(4-3$i$)$x$+(4-$ki$)=0
を満たす実数$x$があるとき、$k$=$\boxed{\ \ キ\ \ }$である。このとき、上の等式を満たす$x$の値は2つあり、$\boxed{\ \ ク\ \ }$と$\boxed{\ \ ケ\ \ }$-$\boxed{\ \ コ\ \ }$$i$ である。ただし、$i$を虚数単位とする。
この動画を見る 

図形と計量 三角比の相互関係の利用2 【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sin^4\theta-\cos^4\theta$を$\sin\theta$だけを用いた式で表せ。また,$\cos\theta$だけを用いた式で表せ。
この動画を見る 

ナイスな連立方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.x,yを正の実数とする.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x\sqrt x+y\sqrt y=32 \\
x\sqrt y+y\sqrt x=31
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【短時間でマスター!!】3元1次方程式を使った2次関数の決定解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
グラフが3点(1,3)(2,5)(3,9)を通るような2次関数は?
この動画を見る 

福田の1.5倍速演習〜合格する重要問題069〜千葉大学2017年度理系第8問〜放物線上の3点を頂点とする三角形の面積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{8}}$ tを0以上の実数とし、Oを原点とする座標平面上の2点P($p, p^2$), Q($q, q^2$)で3つの条件
PQ=2, p<q, p+q=$\sqrt t$
を満たすものを考える。$\triangle OPQ$の面積をSとする。ただし、点Pまたは点Qが原点Oと一致する場合はS=0とする。
(1) pとqをそれぞれtを用いて表せ。
(2) Sをtを用いて表せ。
(3) S=1となるようなtの個数を求めよ。

2017千葉大学理系過去問
この動画を見る 
PAGE TOP