福田の数学〜上智大学2021年理工学部第2問(1)〜条件を満たす関数と命題の否定 - 質問解決D.B.(データベース)

福田の数学〜上智大学2021年理工学部第2問(1)〜条件を満たす関数と命題の否定

問題文全文(内容文):
${\Large\boxed{2}}$(1)実数全体で定義され、実数の値をとる関数$f(x)$に対する次の条件$p$を考える。
$p:「K以上の全ての実数xに対してf(x) \geqq 1」$が成り立つような実数Kが存在する。
$(\textrm{i})$次に挙げた関数$(\textrm{a})~(\textrm{d})$のそれぞれについて、pを満たすならばo、pを
満たさないならばxをマークせよ。
$(\textrm{a})f(x)=xe^{-x}  (\textrm{b})f(x)=\frac{2x^2+1}{x^2+1} (\textrm{c})f(x)=x+\sin x (\textrm{d})f(x)=x\sin x$
$(\textrm{ii})$次の条件がpの否定になるように、$\boxed{\ \ あ\ \ }~\boxed{\ \ え\ \ }$のそれぞれの選択肢から、
あてはまるものを選べ。
・$「\boxed{\ \ あ\ \ }\ \boxed{\ \ い\ \ }$実数に対して$\boxed{\ \ う\ \ }」が\boxed{\ \ え\ \ }$

$\boxed{\ \ あ\ \ }$の選択肢$:(\textrm{a})K$以上の  $(\textrm{b})K$未満の
$\boxed{\ \ い\ \ }$の選択肢:$(\textrm{a})$すべての  $(\textrm{b})$ある
$\boxed{\ \ う\ \ }$の選択肢$:(\textrm{a})f(x) \geqq 1  (\textrm{b})f(x) \lt 1$
$\boxed{\ \ え\ \ }$の選択肢$:(\textrm{a})$どんな実数Kについても成り立つ  $\\(\textrm{b})$成り立つような実数Kが存在する 
$(\textrm{iii})$関数$f(x)$に対して、$g(x)=2f(x)$で関数$g(x)$を定める。次に挙げた命題$(\textrm{A})~(\textrm{D})$
のそれぞれについて、正しければoを、正しくなければxを、マークせよ。
$(\textrm{A})f(x)$が$p$を満たすならば、$g(x)$も$p$を満たす。
$(\textrm{B})g(x)$が$p$を満たすならば、$f(x)$もpを満たす。
$(\textrm{C})f(x)$が$p$を満たさないならば、$g(x)$もpを満たさない。
$(\textrm{D})f(x)$がpを満たさないならば、$g(x)$も$p$を満たす。

2021上智大学理工学部過去問
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(1)実数全体で定義され、実数の値をとる関数$f(x)$に対する次の条件$p$を考える。
$p:「K以上の全ての実数xに対してf(x) \geqq 1」$が成り立つような実数Kが存在する。
$(\textrm{i})$次に挙げた関数$(\textrm{a})~(\textrm{d})$のそれぞれについて、pを満たすならばo、pを
満たさないならばxをマークせよ。
$(\textrm{a})f(x)=xe^{-x}  (\textrm{b})f(x)=\frac{2x^2+1}{x^2+1} (\textrm{c})f(x)=x+\sin x (\textrm{d})f(x)=x\sin x$
$(\textrm{ii})$次の条件がpの否定になるように、$\boxed{\ \ あ\ \ }~\boxed{\ \ え\ \ }$のそれぞれの選択肢から、
あてはまるものを選べ。
・$「\boxed{\ \ あ\ \ }\ \boxed{\ \ い\ \ }$実数に対して$\boxed{\ \ う\ \ }」が\boxed{\ \ え\ \ }$

$\boxed{\ \ あ\ \ }$の選択肢$:(\textrm{a})K$以上の  $(\textrm{b})K$未満の
$\boxed{\ \ い\ \ }$の選択肢:$(\textrm{a})$すべての  $(\textrm{b})$ある
$\boxed{\ \ う\ \ }$の選択肢$:(\textrm{a})f(x) \geqq 1  (\textrm{b})f(x) \lt 1$
$\boxed{\ \ え\ \ }$の選択肢$:(\textrm{a})$どんな実数Kについても成り立つ  $\\(\textrm{b})$成り立つような実数Kが存在する 
$(\textrm{iii})$関数$f(x)$に対して、$g(x)=2f(x)$で関数$g(x)$を定める。次に挙げた命題$(\textrm{A})~(\textrm{D})$
のそれぞれについて、正しければoを、正しくなければxを、マークせよ。
$(\textrm{A})f(x)$が$p$を満たすならば、$g(x)$も$p$を満たす。
$(\textrm{B})g(x)$が$p$を満たすならば、$f(x)$もpを満たす。
$(\textrm{C})f(x)$が$p$を満たさないならば、$g(x)$もpを満たさない。
$(\textrm{D})f(x)$がpを満たさないならば、$g(x)$も$p$を満たす。

2021上智大学理工学部過去問
投稿日:2021.08.26

<関連動画>

四分位範囲とは? 国学院栃木(栃木)

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#データの分析#データの分析#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
0,1,1,2,2,2,2,3,3,3,3,4,5の四分位範囲は?

國學院大學栃木高等学校
この動画を見る 

【数Ⅰ】間違えやすい? 分散の公式の覚え方

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
分散の公式…どっちだっけ?
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2(1)。2次関数の問題。

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(1)座標平面上で、次の二つの2次関数のグラフについて考える。

$y=3x^2+2x+3 \ldots① y=2x^2+2x+3 \ldots②$

①、②の2次関数のグラフには次の共通点がある。

共通点:・y軸との交点のy座標は$\boxed{ア}$である。
・y軸との交点における接線の方程式は$y=\boxed{イ}\ x+\boxed{ウ}$である。

次の⓪~⑤の2次関数のグラフのうち、y軸との交点における接線が
$y=\boxed{イ\}\ x+\boxed{ウ}$となるものは
$\boxed{エ}$である。

$\boxed{エ}$の解答群
⓪$y=3x^2-2x-3$ ①$y=-3x^2+2x-3$ ②$y=2x^2+2x-3$
③$y=2x^2-2x+3$ ④$y=-x^2+2x+3$ ⑤$y=-x^2-2x+3$

a,b,cを0でない実数とする。
曲線$y=ax^2+bx+c$上の点$(0,\boxed{オ})$における接線をlとすると、
その方程式は$y=\boxed{カ}\ x+\boxed{キ}$である。

直線lとx軸との交点のx座標は$\frac{\boxed{クケ}}{\boxed{コ}}$である。

a,b,cが正の実数であるとき、曲線$y=ax^2+bx+c$と
直線lおよび直線$x=\frac{\boxed{クケ}}{\boxed{コ}}$で囲まれた図形の
面積を$S$とすると$S=\frac{ac^{\boxed{サ}}}{\boxed{シ}b^{\boxed{ス}}} \ldots③$ である。

③において、$a=1$とし、Sの値が一定となるように正の実数b,cの値を変化させる。
このとき、bとcの関係を表すグラフの概形は$\boxed{セ}$である。
(※$\boxed{セ}$の選択肢は動画参照)

2022共通テスト数学過去問
この動画を見る 

平均値=中央値 昭和学院秀英 2022入試問題解説13問目

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#データの分析#データの分析#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x点 2点 4点 8点 3点 3点 7点 7点
この得点の平均値と中央値が一致したとき
x=?(*$x \geqq 0$)

2022昭和学院秀英高等学校
この動画を見る 

√の中に√入れたくないよね。式の値 巣鴨高校

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a=\sqrt 6 +\sqrt 2,b=\sqrt 6 - \sqrt 2$
$\frac{\sqrt a +\sqrt b}{\sqrt a - \sqrt b} = ?$
巣鴨高等学校
この動画を見る 
PAGE TOP