大学入試問題#184 早稲田大学 定積分 - 質問解決D.B.(データベース)

大学入試問題#184 早稲田大学 定積分

問題文全文(内容文):
$\displaystyle \int_{4}^{16}\sqrt{ x }\ e^{-\sqrt{ x }}dx$を計算せよ

出典:早稲田大学 入試問題
チャプター:

03:26~ 解答のみ掲載 約10秒間隔

単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{4}^{16}\sqrt{ x }\ e^{-\sqrt{ x }}dx$を計算せよ

出典:早稲田大学 入試問題
投稿日:2022.04.30

<関連動画>

大学入試問題#501「積分区間を2π→0にせんでも・・・・」 産業医科大学(2016) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2\pi}^{0} |3\cos\ x-\sqrt{ 3 }\ \sin\ x|\ dx$

出典:2016年産業医科大学 入試問題
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試理系第3問〜2次曲線の極方程式と置換積分

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#明治大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$a,\ h$を正の実数とする。座標平面において、原点Oからの距離が
直線$x=h$からの距離の$a$倍であるような点$P$の軌跡を考える。点$P$の座標を$(x,\ y)$とする
と、$x,\ y$は次の方程式を満たす。
$(1-\boxed{ア})\ x^2+2\ \boxed{イ}\ x+y^2=\boxed{ウ}...(1)$

$\boxed{ア},\ \boxed{イ},\ \boxed{ウ}$の解答群
$⓪a^2 ①h^2 ②a^3 ③a^2h ④ah^2$
$⑤h^3 ⑥b^4 ⑦a^2h^2 ⑧ah^3 ⑨h^4$

次に、座標平面の原点$O$を極、$x$軸の正の部分を始線とする極座標を考える。
点$P$の極座標を$(r\ \theta)$とする。$r \leqq h$を満たすとき、
点$P$の直交座標$(x,\ y)$を$a,\ h,\ θ$を用いて表すと

$(x,\ y)=(\frac{\boxed{エ}}{\boxed{オ}}\ \cos θ,\ \frac{\boxed{エ}}{\boxed{オ}}\ \sin θ)...(2) $
$\boxed{エ},\ \boxed{オ}$の解答群
$⓪h①ah②h^2③ah^2④1+a\cos θ$
$⑤1+a\sin θ ⑥a\cos θ-1⑦a\sin θ-1⑧1-a\cos θ ⑨1-a\sin θ$

(1)から、$a=\boxed{カ}$のとき、点$P$の軌跡は放物線$x=\boxed{キ}\ y^2+\boxed{ク}$となる。
この放物線とy軸で囲まれた図形の面積$S$は
$S=2\int_0^{\boxed{ケ}}xdy=2\int_0^{\boxed{ケ}}(\boxed{キ}\ y^2+\boxed{ク})dy=$
$\frac{\boxed{コ}}{\boxed{サ}}\ h^2$
である。したがって、(2)を利用すれば、置換積分法により次の等式が成り立つことが分かる。
$\int_0^{\frac{\pi}{2}}\frac{\cos θ}{(1+\cos θ)^2}dθ=\frac{\boxed{シ}}{\boxed{ス}}$

$\boxed{キ},\ \boxed{ク},\ \boxed{ケ}$の解答群
$⓪h ①2h ②\frac{h}{2} ③-\frac{h}{2} ④\frac{1}{h}$
$⑤-\frac{1}{h} ⑥\frac{1}{2h} ⑦-\frac{1}{2h} ⑧h^2 ⑨-h^2$

2022明治大学全統理系過去問
この動画を見る 

大学入試問題#413「解き方は色々ありそうだけど・・ここは」 佐賀大学2016 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{3}{4}\pi} \displaystyle \frac{x}{\sin\ x} dx$

出典:2016年佐賀大学 入試問題
この動画を見る 

【高校数学】東京大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分92日目~47都道府県制覇への道~【㉟東京】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【東京大学 2024】
座標空間内に3点A(1,0,0),B(0,1,0),C(0,0,1)をとり、D を線分ACの中点とする。三角形ABDの周および内部をx軸のまわりに1回転させて得られる立体の体積を求めよ。
この動画を見る 

大学入試問題#150 京都大学(1991) 積分の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$a$実数
$e^x \geqq e^a+(x-1)e^a$を示せ

(2)
$\displaystyle \int_{0}^{1}e^{\sin\ \pi\ x}dx \geqq e^{\frac{2}{x}}$を示せ

出典:1991年京都大学 入試問題
この動画を見る 
PAGE TOP