東邦大 対数とΣの基本問題 - 質問解決D.B.(データベース)

東邦大 対数とΣの基本問題

問題文全文(内容文):
2023東邦大学過去問題
$\displaystyle\sum_{n=1}^{2023}\log_{10}\frac{5n+1}{5n-4}$の整数部分
単元: #対数関数#数列
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023東邦大学過去問題
$\displaystyle\sum_{n=1}^{2023}\log_{10}\frac{5n+1}{5n-4}$の整数部分
投稿日:2023.09.03

<関連動画>

福田の数学〜慶應義塾大学2022年総合政策学部第1問〜ガウス記号を含む数列の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$実数xに対して、x以下の最大の整数を$[x]$と表すことにする。
いま、数列$\left\{a_n\right\}$を
$a_n=[\sqrt{2n}+\frac{1}{2}]$
と定義すると
$a_1=\boxed{\ \ ア\ \ },\ \ \ \ a_2=\boxed{\ \ イ\ \ },\ \ \ \ a_3=\boxed{\ \ ウ\ \ },\ \ \ \ a_4=\boxed{\ \ エ\ \ },\ \ \ \ a_5=\boxed{\ \ オ\ \ },a_6=\boxed{\ \ カ\ \ },$
となる。このとき、$a_n=10$となるのは、$\boxed{\ \ キク\ \ } \leqq n \leqq \boxed{\ \ ケコ\ \ }$の場合に限られる。
また、$\sum_{n=1}^{\boxed{\ \ ケコ\ \ }}a_n=\boxed{\ \ サシスセ\ \ }$である。

2022慶應義塾大学総合政策学部過去問
この動画を見る 

高専数学 微積II #32(2) 級数の収束条件

単元: #数Ⅱ#微分法と積分法#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \sum_{n=1}^{\infty} \dfrac{1}{(1+x)^{n-1}}$
が収束するように$x$の範囲を定め,
その和を求めよ.
この動画を見る 

【テストによく出る!】漸化式の典型問題はこう解く!〔数学、高校数学〕

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
以下の漸化式で表される数列の一般項を求めよ。
$a_{n+1}=2a_n+3$ $a_1=1$
この動画を見る 

【数学B/数列】(等差数列)×(等比数列)型の数列の和

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の和$S$を求めよ。
$S=1・1+2・3+3・3^2+4・3^3+$
$…+n・3^{n-1}$
この動画を見る 

横浜国大 複雑な漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_0=1$一般項を求めよ$(n$自然数$)$
$a_n=\displaystyle \sum_{k=1}^n 3^ka_{n-k}$

出典:2000年横浜国立大学 過去問
この動画を見る 
PAGE TOP