福田の数学〜東京大学2023年理系第6問〜線分の先端の可動範囲と関節を加えたときの可動範囲(PART1) - 質問解決D.B.(データベース)

福田の数学〜東京大学2023年理系第6問〜線分の先端の可動範囲と関節を加えたときの可動範囲(PART1)

問題文全文(内容文):
$\Large\boxed{6}$ Oを原点とする座標空間において、不等式|x|≦1, |y|≦1, |z|≦1の表す立方体を考える。その立方体の表面のうち、z<1を満たす部分をSとする。
以下、座標空間内の2点A,Bが一致するとき、線分ABは点Aを表すものとし、その長さを0と定める。
(1)座標空間内の点Pが次の条件(i),(ii)をともに満たすとき、点Pが動きうる範囲Vの体積を求めよ。
(i)OP≦$\sqrt 3$
(ii)線分OPとSは、共有点をもたないか、点Pのみを共有点にもつ。
(2)座標空間内の点Nと点Pが次の条件(iii),(iv),(v)をすべて満たすとき、点Pが動きうる範囲Wの体積を求めよ。必要ならば、$\sin\alpha$=$\frac{1}{\sqrt 3}$を満たす実数α(0<α<$\frac{\pi}{2}$)を用いてよい。
(iii)ON+NP≦$\sqrt 3$
(iv)線分ONとSは共有点を持たない。
(v)線分NPとSは、共有点を持たないか、点Pのみを共有点を持つ。

2023東京大学理系過去問
単元: #数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ Oを原点とする座標空間において、不等式|x|≦1, |y|≦1, |z|≦1の表す立方体を考える。その立方体の表面のうち、z<1を満たす部分をSとする。
以下、座標空間内の2点A,Bが一致するとき、線分ABは点Aを表すものとし、その長さを0と定める。
(1)座標空間内の点Pが次の条件(i),(ii)をともに満たすとき、点Pが動きうる範囲Vの体積を求めよ。
(i)OP≦$\sqrt 3$
(ii)線分OPとSは、共有点をもたないか、点Pのみを共有点にもつ。
(2)座標空間内の点Nと点Pが次の条件(iii),(iv),(v)をすべて満たすとき、点Pが動きうる範囲Wの体積を求めよ。必要ならば、$\sin\alpha$=$\frac{1}{\sqrt 3}$を満たす実数α(0<α<$\frac{\pi}{2}$)を用いてよい。
(iii)ON+NP≦$\sqrt 3$
(iv)線分ONとSは共有点を持たない。
(v)線分NPとSは、共有点を持たないか、点Pのみを共有点を持つ。

2023東京大学理系過去問
投稿日:2023.03.12

<関連動画>

【数A】【難問】正二十面体の体積を求めよ。

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
教材: #チャート式#青チャートⅠ・A#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
1辺の長さが1の正二十面体の体積を求めなさい。
この動画を見る 

空間図形 垂直について 簡単だけど大切です。

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$AD⊥△BCD$
直角である角は?
*図は動画内参照

2021静岡県
この動画を見る 

正十二角形の中の三角形の個数

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
正十二角形の3つの頂点を結んでできる三角形の個数は$\boxed{ア}$コである。
そのうち
・2辺を共有する三角形は$\boxed{イ}$コ
・1辺を共有する三角形は$\boxed{ウ}$コ
・辺を共有しない三角形は$\boxed{エ}$コ
・直角三角形は$\boxed{オ}$コ
・正三角形は$\boxed{カ}$コ
・二等辺三角形は$\boxed{キ}$コ
ある。
*図は動画内参照
この動画を見る 

【高校数学】 数A-63 直線と平面②

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
凸多面体の①の数をV,②の数をe,③の数を$f$とすると,
$v-e+f=2$が成り立つ.これを④定理という.

空間内の直線$l,m,n$や,平面$P,Q,R$について,
次の記述が正しいときは○,正しくないときは×で答えよう.

⑤$\ell \perp P,m\perp P$のとき,$\ell \perp m$である.

⑥$\ell /\!/ P,m/\!/ P$のとき,$\ell /\!/m$である.

⑦$P /\!/ \ell,Q /\!/ \ell$のとき,$P/\!/ Q$である.

⑧$P\perp Q,Q /\!/ R$のとき,$P\perp R$である.

⑨$\ell \perp m,m\perp n$のとき,$\ell /\!/ n$である.
この動画を見る 

【高校数学】立体の問題のポイント・重要公式集【コツさえつかめば怖くない!】

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【高校数学】立体の問題のポイント・重要公式集
-----------------
1⃣
球の中に正四面体ABCDが内接している。
正四面体ABCDの一辺の長さをaとし、球の半径をRとするとき、Rをaを用いて示しなさい。

2⃣
正四面体ABCDに球が内接している。
このとき、球の半径rをaを用いて表しなさい。
この動画を見る 
PAGE TOP