問題文全文(内容文):
$\Large\boxed{6}$ Oを原点とする座標空間において、不等式|x|≦1, |y|≦1, |z|≦1の表す立方体を考える。その立方体の表面のうち、z<1を満たす部分をSとする。
以下、座標空間内の2点A,Bが一致するとき、線分ABは点Aを表すものとし、その長さを0と定める。
(1)座標空間内の点Pが次の条件(i),(ii)をともに満たすとき、点Pが動きうる範囲Vの体積を求めよ。
(i)OP≦$\sqrt 3$
(ii)線分OPとSは、共有点をもたないか、点Pのみを共有点にもつ。
(2)座標空間内の点Nと点Pが次の条件(iii),(iv),(v)をすべて満たすとき、点Pが動きうる範囲Wの体積を求めよ。必要ならば、$\sin\alpha$=$\frac{1}{\sqrt 3}$を満たす実数α(0<α<$\frac{\pi}{2}$)を用いてよい。
(iii)ON+NP≦$\sqrt 3$
(iv)線分ONとSは共有点を持たない。
(v)線分NPとSは、共有点を持たないか、点Pのみを共有点を持つ。
2023東京大学理系過去問
$\Large\boxed{6}$ Oを原点とする座標空間において、不等式|x|≦1, |y|≦1, |z|≦1の表す立方体を考える。その立方体の表面のうち、z<1を満たす部分をSとする。
以下、座標空間内の2点A,Bが一致するとき、線分ABは点Aを表すものとし、その長さを0と定める。
(1)座標空間内の点Pが次の条件(i),(ii)をともに満たすとき、点Pが動きうる範囲Vの体積を求めよ。
(i)OP≦$\sqrt 3$
(ii)線分OPとSは、共有点をもたないか、点Pのみを共有点にもつ。
(2)座標空間内の点Nと点Pが次の条件(iii),(iv),(v)をすべて満たすとき、点Pが動きうる範囲Wの体積を求めよ。必要ならば、$\sin\alpha$=$\frac{1}{\sqrt 3}$を満たす実数α(0<α<$\frac{\pi}{2}$)を用いてよい。
(iii)ON+NP≦$\sqrt 3$
(iv)線分ONとSは共有点を持たない。
(v)線分NPとSは、共有点を持たないか、点Pのみを共有点を持つ。
2023東京大学理系過去問
単元:
#数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#東京大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ Oを原点とする座標空間において、不等式|x|≦1, |y|≦1, |z|≦1の表す立方体を考える。その立方体の表面のうち、z<1を満たす部分をSとする。
以下、座標空間内の2点A,Bが一致するとき、線分ABは点Aを表すものとし、その長さを0と定める。
(1)座標空間内の点Pが次の条件(i),(ii)をともに満たすとき、点Pが動きうる範囲Vの体積を求めよ。
(i)OP≦$\sqrt 3$
(ii)線分OPとSは、共有点をもたないか、点Pのみを共有点にもつ。
(2)座標空間内の点Nと点Pが次の条件(iii),(iv),(v)をすべて満たすとき、点Pが動きうる範囲Wの体積を求めよ。必要ならば、$\sin\alpha$=$\frac{1}{\sqrt 3}$を満たす実数α(0<α<$\frac{\pi}{2}$)を用いてよい。
(iii)ON+NP≦$\sqrt 3$
(iv)線分ONとSは共有点を持たない。
(v)線分NPとSは、共有点を持たないか、点Pのみを共有点を持つ。
2023東京大学理系過去問
$\Large\boxed{6}$ Oを原点とする座標空間において、不等式|x|≦1, |y|≦1, |z|≦1の表す立方体を考える。その立方体の表面のうち、z<1を満たす部分をSとする。
以下、座標空間内の2点A,Bが一致するとき、線分ABは点Aを表すものとし、その長さを0と定める。
(1)座標空間内の点Pが次の条件(i),(ii)をともに満たすとき、点Pが動きうる範囲Vの体積を求めよ。
(i)OP≦$\sqrt 3$
(ii)線分OPとSは、共有点をもたないか、点Pのみを共有点にもつ。
(2)座標空間内の点Nと点Pが次の条件(iii),(iv),(v)をすべて満たすとき、点Pが動きうる範囲Wの体積を求めよ。必要ならば、$\sin\alpha$=$\frac{1}{\sqrt 3}$を満たす実数α(0<α<$\frac{\pi}{2}$)を用いてよい。
(iii)ON+NP≦$\sqrt 3$
(iv)線分ONとSは共有点を持たない。
(v)線分NPとSは、共有点を持たないか、点Pのみを共有点を持つ。
2023東京大学理系過去問
投稿日:2023.03.12