福田の数学〜東京大学2023年理系第6問〜線分の先端の可動範囲と関節を加えたときの可動範囲(PART1) - 質問解決D.B.(データベース)

福田の数学〜東京大学2023年理系第6問〜線分の先端の可動範囲と関節を加えたときの可動範囲(PART1)

問題文全文(内容文):
6 Oを原点とする座標空間において、不等式|x|≦1, |y|≦1, |z|≦1の表す立方体を考える。その立方体の表面のうち、z<1を満たす部分をSとする。
以下、座標空間内の2点A,Bが一致するとき、線分ABは点Aを表すものとし、その長さを0と定める。
(1)座標空間内の点Pが次の条件(i),(ii)をともに満たすとき、点Pが動きうる範囲Vの体積を求めよ。
(i)OP≦3
(ii)線分OPとSは、共有点をもたないか、点Pのみを共有点にもつ。
(2)座標空間内の点Nと点Pが次の条件(iii),(iv),(v)をすべて満たすとき、点Pが動きうる範囲Wの体積を求めよ。必要ならば、sinα=13を満たす実数α(0<α<π2)を用いてよい。
(iii)ON+NP≦3
(iv)線分ONとSは共有点を持たない。
(v)線分NPとSは、共有点を持たないか、点Pのみを共有点を持つ。

2023東京大学理系過去問
単元: #数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
6 Oを原点とする座標空間において、不等式|x|≦1, |y|≦1, |z|≦1の表す立方体を考える。その立方体の表面のうち、z<1を満たす部分をSとする。
以下、座標空間内の2点A,Bが一致するとき、線分ABは点Aを表すものとし、その長さを0と定める。
(1)座標空間内の点Pが次の条件(i),(ii)をともに満たすとき、点Pが動きうる範囲Vの体積を求めよ。
(i)OP≦3
(ii)線分OPとSは、共有点をもたないか、点Pのみを共有点にもつ。
(2)座標空間内の点Nと点Pが次の条件(iii),(iv),(v)をすべて満たすとき、点Pが動きうる範囲Wの体積を求めよ。必要ならば、sinα=13を満たす実数α(0<α<π2)を用いてよい。
(iii)ON+NP≦3
(iv)線分ONとSは共有点を持たない。
(v)線分NPとSは、共有点を持たないか、点Pのみを共有点を持つ。

2023東京大学理系過去問
投稿日:2023.03.12

<関連動画>

福田の数学〜共通テスト対策にもってこい〜明治大学2023年全学部統一ⅠⅡAB第3問〜四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#センター試験・共通テスト関連#学校別大学入試過去問解説(数学)#共通テスト#空間における垂直と平行と多面体(オイラーの法則)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
3 一辺の長さが6の正四面体ABCDにおいて、点Aから3点B,C,Dを含む平面に垂線AHを下ろす。また、辺ABを1:2に内分する点をP、辺ACを2:1に内分する点をQ、辺ADをt:1-tに内分する点をRとする。ただし、
0<t<1 とする。
(1)AHの長さは         であり、正四面体ABCDの体積は         である。
(2)AHと三角形PQRの交点をXとすると、AX=    AH である。
(3)三角形PQRの面積は    t2    t+     である。
(4)t=12 のとき、四面体APQRの体積は        で、点Aから3点P,Q,Rを通る平面に垂線AYを下ろすと、AYの長さは             である。
この動画を見る 

これなに?

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
オイラーの多面体定理解説動画です
この動画を見る 

福田の数学〜早稲田大学2022年商学部第3問〜空間図形の計量

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標空間において、2つの円C1, C2
C1={(x,y,0) | x2+y2=1}, C2={(0,y,z) | (y1)2+z2=1}
とする。次の設問に答えよ。
(1)C1上の2点とC2上の点(0,1,1)を頂点とする正三角形を考える。
このような正三角形の一辺の長さをすべて求めよ。
(2)すべての頂点がC_1∪C_2上にある正四面体を考える。
このような正四面体の一辺の長さをすべて求めよ。

2022早稲田大学商学部過去問
この動画を見る 

福田の数学〜上智大学2023年理工学部第1問(3)〜正四面体を切った断面

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1 (3)一辺の長さが2である正四面体OABCにおいて、辺OAの中点をM、辺BCの中点をNとする。
(i)線分MNの長さは    である。
(ii)0<s<1とし、線分MNをs(1s)に内分する点をPとする。Pを通りMNに垂直な平面で四面体OABCを切った断面は    であり、その面積は    である。

    の選択肢
(a)1 (b)2 (c)3 (d)2 (e)1+52 (f)62

    の選択肢
(a)正三角形 (b)正三角形でない二等辺三角形 (c)二等辺三角形でない三角形 (d)長方形 (e)長方形でない平行四辺形 (f)平行四辺形でない四角形

    の選択肢
(a)s2 (b)(1s)2 (c)s(1s) (d)s1s2 
(e)2s2 (f)2(1s)2 (g)2s(1s) (h)2s1s2 
(i)4s2 (j)4(1s)2 (k)4s(1s) (l)4s1s2 
この動画を見る 

嵐の方程式 5-1=0 をオイラーの公式を使って よさまつが証明するよ

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#式と証明#恒等式・等式・不等式の証明#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
オイラーの公式 説明動画です
この動画を見る 
PAGE TOP preload imagepreload image