単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 南北方向にm区画、東西方向にn区画に区切られた長方形の土地がある。\\
この土地のそれぞれの区画にm種類の作物を1種類ずつ植える。ただし、南北方向に\\
は同じ種類の作物が植えられている区画はないようにする。このとき、東西方向に\\
隣り合う区画に同じ種類の作物が植えられている場合には、それらの区画は連結\\
した1個の畑とみなすとする。例えば、南北方向に3区画、東西方向に5区画で、\\
A,B,C3種類の作物を次のように植えた場合、畑が11個とみなす。\\
(1)m=3の時を考える。n=1ならば、畑の数は常に3個で、1通りある。\\
n=2ならば、畑の数は3個、5個、6個で3通りある。n=3ならば、畑の数は\\
\boxed{\ \ ク\ \ }通りある。n=10ならば、畑の数は\boxed{\ \ ケ\ \ }通りある。\\
(2)m=3でn=3のとき、畑の数が8個になる植え方は\boxed{\ \ コ\ \ }通りある。\\
(3)m=6のときを考える。各列の南北方向の6区画に作物を植える植え方は6!通り\\
あるが、それらすべてが等確率になるように植えることにする。n=2のとき、\\
畑が8個である確率は\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}であり、畑が9個である確率は\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}であり、\\
畑が10個である確率は\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}である。n=3のとき、\\
畑が10個である確率をpとすると\boxed{\ \ け\ \ }である。\\
\\
\\
\boxed{\ \ け\ \ }の選択肢:\\
(\textrm{a})p \geqq \frac{1}{100} (\textrm{b})\frac{1}{200} \leqq p \lt \frac{1}{100} (\textrm{c})\frac{1}{500} \leqq p \lt \frac{1}{200}\\
(\textrm{d})\frac{1}{1000} \leqq p \lt \frac{1}{500} (\textrm{e})\frac{1}{2000} \leqq p \lt \frac{1}{1000} (\textrm{f})\frac{1}{5000} \leqq p \lt \frac{1}{2000}\\
(\textrm{g})\frac{1}{10000} \leqq p \lt \frac{1}{5000} (\textrm{h})p \lt \frac{1}{10000}
\end{eqnarray}
2021上智大学理系過去問
この動画を見る