ちょっとした方程式 x^e=e^x - 質問解決D.B.(データベース)

ちょっとした方程式 x^e=e^x

問題文全文(内容文):
これを解け$(x\gt 0)$
$x^e=e^x$
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け$(x\gt 0)$
$x^e=e^x$
投稿日:2021.09.06

<関連動画>

4乗根の方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$\sqrt[4]{97-x}+\sqrt[4]{x-15}=4$
この動画を見る 

福田の数学〜慶應義塾大学2024環境情報学部第2問〜2べき乗表現の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$b_k$を正の整数、$b_{k-1},\cdots,b_1,b_0$を負でない整数とする($k$は負でない整数であり、$k=0$のときは正の整数$b_0$のみを考える)。正の整数$n$に対して、$b_k,b_{k-1},\cdots,b_1,b_0$が$\ \ \ \ $
$\displaystyle 2^kb_k+2^{k-1}b_{k-1}+\cdots+2^2b_2+2b_1+b_0=\sum_{i=0}^k2^ib_i=n\ \\ $を満たすとき、$\langle b_k,b_{k-1},\cdots,b_1,b_0 \rangle$を$n$の2べき乗表現と呼ぶことにする。これは2進法による数の表現と似ているが、2進法の場合とは異なり、$b_i\ (i=0,1,\cdots,k)$は2以上の値も取りうる。そのため$n\geqq 2$において、$n$の2べき乗表現は1通りではない。$\\$
(1)$\ n=3$の2べき乗表現は$\langle 3 \rangle$と$\langle ア, イ\rangle$の2通りである。$\\ $(2)$\ \langle 3,2,1 \rangle$は$n=(ウエ)$の2べき乗表現である。$\\ $(3) $\ m$を正の整数とするとき、1から$m$までの整数を順に並べた$\langle 1,2,\cdots ,m \rangle$は$\ \ 2^{(m+オカ)}+(キク)m+(ケコ)\ $の2べき乗表現である。$\\ $ (4)$\ n$の2べき乗表現の個数を$a_n$とすると、$\ a_4=(サシ),\ a_5=(スセ),\ a_6=(ソタ),\cdots ,a_{10}=(チツ),\cdots , a_{20}=(テト)$である。
この動画を見る 

割って余る問題 国学院高校

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
101と227をnで割ったときの余りが17になる自然数nのうち、最大のものを求めよ
この動画を見る 

福田のおもしろ数学148〜円の面積

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#図形と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
左図(※動画参照)で4つの四角形はすべて面積が$16 \textrm{cm}^2$の正方形です。
円の面積を求めて下さい。
この動画を見る 

福田の数学〜東京医科歯科大学2023年医学部第1問PART1〜格子折れ線の個数を数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ xy平面において、x座標およびy座標が共に整数であるような点を格子点と呼ぶ。xy平面上の相異なる2つの格子点を端点とする折れ線のうち、x座標またはy座標が等しい格子点どうしを結ぶ線分のみから構成され、かつ同じ点を2度通ることはないものを、格子折れ線と呼ぶ。ここで格子折れ線の向きは考慮せず、端点および通過する点がすべて等しい格子折れ線は同じものとする。また、自然数$n$に対し、
0≦$x$≦$n$ かつ 0≦$y$≦1
を満たす格子点全体の集合を$V_n$とする。さらに、$V_n$に属する格子点をすべて通り、かつ$V_n$に属さない格子点は通らない格子折れ線全体の集合を$L_n$とする。たとえば、7つの格子点(0,1),(0,0),(1,0),(1,1),(4,1),(4,0),(2,0)を順に結んだ折れ線は$L_4$に属する。このとき、以下の問いに答えよ。
(1)$L_1$および$L_2$に属する格子折れ線をすべて図示せよ。
(2)$L_4$に属する格子折れ線のうち、両端点の$x$座標の差が3以上となるものをすべて図示せよ。
(3)$n$≧3のとき、$L_n$に属する格子折れ線のうち、両端点の$x$座標の差が$n$-2となるものの個数を求めよ。
(4)$L_n$に属する格子折れ線の個数$l_n$を$n$を用いて表せ。
この動画を見る 
PAGE TOP