福田の数学〜慶應義塾大学薬学部2025第1問(3)〜絶対値の付いた対数関数の最小 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学薬学部2025第1問(3)〜絶対値の付いた対数関数の最小

問題文全文(内容文):

$\boxed{1}$

(3)実数$x$に対して、関数

$f(x)=\left \vert \dfrac{1}{10^{-x}\log 10^{-x}}\right \vert$

は、$x=\boxed{キ}$のとき最小値$\boxed{ク}$をとる。

ただし、$x$は$x\gt 0$を満たし、対数は自然対数とする。

なお、$\log 2=0.69,\log 3=1.10,\log 5=1.61,$

自然対数の底$e$は$2.72$として計算し、

$\boxed{キ}$と$\boxed{ク}$は小数で答えなさい。

値が小数第$2$位までで割り切れない場合は、

小数第$3$位を四捨五入して小数第$2$位まで求めなさい。

$2025$年慶應義塾大学薬学部過去問題
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(3)実数$x$に対して、関数

$f(x)=\left \vert \dfrac{1}{10^{-x}\log 10^{-x}}\right \vert$

は、$x=\boxed{キ}$のとき最小値$\boxed{ク}$をとる。

ただし、$x$は$x\gt 0$を満たし、対数は自然対数とする。

なお、$\log 2=0.69,\log 3=1.10,\log 5=1.61,$

自然対数の底$e$は$2.72$として計算し、

$\boxed{キ}$と$\boxed{ク}$は小数で答えなさい。

値が小数第$2$位までで割り切れない場合は、

小数第$3$位を四捨五入して小数第$2$位まで求めなさい。

$2025$年慶應義塾大学薬学部過去問題
投稿日:2025.04.09

<関連動画>

近畿大(医)お知らせもあるよ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\log_{10} 5$
の小数第二位を求めよ
この動画を見る 

微分の超頻出の問題!どこで最大値を取るかしっかり考えよう【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
正の実数a,xに対して,

y=$(\log_{\frac{1}{2}}x)^{3}$+$a(\log_{\sqrt{ 2 } } x)(\log_{4} x^{3})$とする。

(1)t=$\log_{ 2 } x$とするとき,yをa,tを用いて表せ。

(2)xが$\dfrac{1}{2}$≦x≦8の範囲を動くとき,yの最大値Mをaを用いて表せ。

大阪大過去問
この動画を見る 

福田の数学〜立教大学2022年理学部第1問(1)〜対数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}(1)$実数$x$に関する方程式
$2\log(1-x)-\log(5-x)=\log 2$
を解くと$x=\boxed{ア}$である.

立教大学2022年理学部過去問
この動画を見る 

【短時間でポイントチェック!!】対数の計算・底の変換公式〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
①$\log_{8}2+\log_{8}4$
②$\log_{3}72-\log_{3}8$
③$\log_{5}\sqrt{125}$
④$\log_{8}16$
⑤$\log_{2}3×\log_{3}2$
この動画を見る 

大学入試問題#254 神戸大学2012 #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#積分とその応用#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$2 \leqq n$自然数
$\displaystyle \int_{n}^{n^3}\displaystyle \frac{dx}{x\ log\ x}$を計算せよ。

出典:2012年神戸大学 入試問題
この動画を見る 
PAGE TOP