日本医科大 漸化式 自由に解かせてくれ! - 質問解決D.B.(データベース)

日本医科大 漸化式 自由に解かせてくれ!

問題文全文(内容文):
$a_1=-6,
a_{n+1}=2a_n+3n+4^n$
これを求めよ。

日本医科大過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=-6,
a_{n+1}=2a_n+3n+4^n$
これを求めよ。

日本医科大過去問
投稿日:2023.03.22

<関連動画>

誘導がなければ素晴らしい解法も出てくるんじゃね?

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#大阪教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
点Pは原点を出発して,「確率pで+1,確率1-pで+2」の移動を繰り返す.
ただし$0\leqq p \leqq 1$とする.このような移動を繰り返して自然数nの点に到達する確率を$p_n$と表す.次の問に答えよ.

(1)$p_1,p_2,p_3$を$p$を用いて表せ.
(2)$p_n,p_{n+1},p_{n+2}$の間の関係式を求めよ.
(3)$a_n=p_{n+1}-p_n(n \geqq 1)$とおくとき,数列${a_n}$が満たす漸化式を求めよ.
(4)pとnを用いて,一般項$p_n$を表せ.
(5)数列${p_n}$の極限を調べよ.
この動画を見る 

岩手大 漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n=1,2,3・・・・$
$a_1=31$
$a_{n+1}=\dfrac{(n+3)a_n-28}{n+2}$
一般項を求めよ.

2020岩手大過去問
この動画を見る 

大学入試問題#250 福井大学(2012) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#数列#漸化式#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n$を0以上の整数とする。
次の2つの条件をみたす関数$f_n(x)$を求めよ。
(ⅰ)$f_0(x)=e^x$
(ⅱ)$f_n(x)=\displaystyle \int_{0}^{x}(n+t)f_{n-1}(t)dt$

出典:2012年福井大学 入試問題
この動画を見る 

福田の数学〜一橋大学2023年文系第4問〜群数列

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ xy平面上で、x座標とy座標がともに正の整数であるような各点に、下の図のような番号をつける。(※動画参照)点(m, n)につけた番号をf(m, n)とする。
たとえば、$f(1, 1)=1, f(3, 4)=19$ である。
(1)$f(m, n)+f(m+1, n+1)=2f(m, n+1)$
が成り立つことを示せ。
(2)$f(m, n)+f(m+1, n)+f(m, n+1)+f(m+1, n+1)=2023$
となるような整数の組(m, n)を求めよ。

2023一橋大学文系過去問
この動画を見る 

09和歌山県教員採用試験(数学:2番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$
$a_1=1,a_{n+1}=\dfrac{a_n}{4a_n+3}$
一般項$a_n$を求めよ.
この動画を見る 
PAGE TOP