日本医科大 漸化式 自由に解かせてくれ! - 質問解決D.B.(データベース)

日本医科大 漸化式 自由に解かせてくれ!

問題文全文(内容文):
$a_1=-6,
a_{n+1}=2a_n+3n+4^n$
これを求めよ。

日本医科大過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=-6,
a_{n+1}=2a_n+3n+4^n$
これを求めよ。

日本医科大過去問
投稿日:2023.03.22

<関連動画>

福田のおもしろ数学295〜与えられた不等式を満たす数列の1との大小関係

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
どの項も正である数列$\{a_n\}$について
$(a_{n+1})^2+a_na_{n+2}\leqq a_n+a_{n+2}$
が成り立つとき、
$a_{2024}\leqq 1$を示せ。
この動画を見る 

福田のおもしろ数学545〜最大公約数と最小公倍数の商で定まる数列

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

自然数の列$\{a_n\}$が次の性質を満たしている。

$a_n=\dfrac{Icm(a_{n-1},a_{n-2})}{gcd(a_{n-1},a_{n-2})} \quad (n\geqq 2)$

$a_{560}=560,a_{1600}=1600$のとき

$a_{2025}$を求めて下さい。
    
この動画を見る 

福田の数学〜九州大学2023年理系第2問〜数列の収束発散の判定

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $\alpha$を実数とする。数列$\left\{a_n\right\}$が
$a_1$=$\alpha$, $a_{n+1}$=|$a_n$-1|+$a_n$-1 (n=1,2,3,...)
で定められるとき、以下の問いに答えよ。
(1)$\alpha$≦1のとき、数列$\left\{a_n\right\}$の収束、発散を調べよ。
(2)$\alpha$>2のとき、数列$\left\{a_n\right\}$の収束、発散を調べよ。
(3)1<$\alpha$<$\frac{3}{2}$のとき、数列$\left\{a_n\right\}$の収束、発散を調べよ。
(4)$\frac{3}{2}≦\alpha$<2のとき、数列$\left\{a_n\right\}$の収束、発散を調べよ。

2023九州大学理系過去問
この動画を見る 

福田のおもしろ数学505〜フィボナッチ数列の性質

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

フィボナッチ数列$\{f_n\}$

$f_1=f_2=1,f_{n+2}=f_{n+1}+f_n$

に対し、

$f_m・f_n=mn$

を満たす自然数の組$(m,n)$をすべて求めて下さい。
    
この動画を見る 

福田の数学〜神戸大学2024年理系第1問〜無理関数を利用して定義された数列の一般項

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#神戸大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $c$を正の実数とする。各項が正である数列$\left\{a_n\right\}$を次のように定める。$a_1$は関数
$y$=$x$+$\sqrt{c-x^2}$ (0≦$x$≦$\sqrt c$)
が最大値をとるときの$x$の値とする。$a_{n+1}$は関数
$y$=$x$+$\sqrt{a_n-x^2}$ (0≦$x$≦$\sqrt{a_n}$)
が最大値をとるときの$x$の値とする。数列$\left\{b_n\right\}$を$b_n$=$\log_2a_n$ で定める。以下の問いに答えよ。
(1)$a_1$を$c$を用いて表せ。
(2)$b_{n+1}$を$b_n$を用いて表せ。
(3)数列$\left\{b_n\right\}$の一般項を$n$と$c$を用いて表せ。
この動画を見る 
PAGE TOP