問題文全文(内容文):
曲面$x^2+y^2=1$ $(z \geqq 0)$と平面z=2x、xy平面で囲まれた体積Vを求めよ。
曲面$x^2+y^2=1$ $(z \geqq 0)$と平面z=2x、xy平面で囲まれた体積Vを求めよ。
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#高専(高等専門学校)
指導講師:
ますただ
問題文全文(内容文):
曲面$x^2+y^2=1$ $(z \geqq 0)$と平面z=2x、xy平面で囲まれた体積Vを求めよ。
曲面$x^2+y^2=1$ $(z \geqq 0)$と平面z=2x、xy平面で囲まれた体積Vを求めよ。
投稿日:2020.11.02