大学入試問題#763「読みの入った式変形」 東京理科大学理学部(2003) #複素数 - 質問解決D.B.(データベース)

大学入試問題#763「読みの入った式変形」 東京理科大学理学部(2003) #複素数

問題文全文(内容文):
$0 \lt t \lt 2\pi$とする
$z=\displaystyle \frac{1+\cos\ t+i\ \sin\ t}{1-\cos\ t-i\ \sin\ t}$

(1)$0 \lt t \lt \pi$における$z$の偏角を弧度法で表せ
(2)$\displaystyle \int_{\frac{\pi}{2}}^{\pi} |z|dt$を求めよ。

出典:2003年東京理科大学理学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \lt t \lt 2\pi$とする
$z=\displaystyle \frac{1+\cos\ t+i\ \sin\ t}{1-\cos\ t-i\ \sin\ t}$

(1)$0 \lt t \lt \pi$における$z$の偏角を弧度法で表せ
(2)$\displaystyle \int_{\frac{\pi}{2}}^{\pi} |z|dt$を求めよ。

出典:2003年東京理科大学理学部 入試問題
投稿日:2024.03.13

<関連動画>

大学入試問題#673「何度も解いてるはず」 東京慈恵会医科大学(2001)

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} log(x^2+3) dx$

出典:2001年東京慈恵会医科大学 入試問題
この動画を見る 

福田の数学〜中央大学2022年経済学部第1問(6)〜放物線と直線で囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(6)放物線$y=x^2-4x+3$と直線$y=2x-2$で囲まれた図形の面積を求めよ。

2022中央大学経済学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第3問〜定積分で表された関数の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}$実数$k \gt 0$ に対して、関数$A(k)=\int_0^2|x^2-kx|dx$とすると

$A(k)=
\left\{\begin{array}{1}
\frac{\boxed{\ \ アイ\ \ }\ k^3+\ \boxed{\ \ ウエ\ \ }\ k^2+\ \boxed{\ \ オカ\ \ }\ k+\ \boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}
(0 \lt k \lt \boxed{\ \ サシ\ \ })

\frac{\boxed{\ \ スセ\ \ }\ k+\ \boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}(\boxed{\ \ サシ\ \ } \leqq k)
\end{array}
\right.$
となる。この関数A(k)が最小となるのは$k=\sqrt{\boxed{\ \ テト\ \ }}$のときで、そのときの
A(k)の値は$\frac{\boxed{\ \ ナニ\ \ }+\boxed{\ \ ヌネ\ \ }\sqrt{\boxed{\ \ ノハ\ \ }}}{\boxed{\ \ ヒフ\ \ }}$

2022慶應義塾大学総合政策学部過去問
この動画を見る 

大学入試問題#760「ほぼ一直線」 東京理科大学(2003) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
定積分
$I=\displaystyle \int_{1}^{4} t^2\sin(\displaystyle \frac{\pi}{4}t\sqrt{ t })\ dt$を求めよ。

出典:2003年東京理科大学 入試問題
この動画を見る 

【高校数学】京都大学の定積分の問題はとにかく基本に忠実に!

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【京都大学 2025】
次の定積分の値を求めよ。
$\displaystyle \int _0^\sqrt{3}\frac{x\sqrt{x^2+1}+2x^3+1}{x^2+1}dx$
この動画を見る 
PAGE TOP