【数Ⅲ】【積分とその応用】回転軸をまたぐ回転体の体積 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【積分とその応用】回転軸をまたぐ回転体の体積 ※問題文は概要欄

問題文全文(内容文):
次の曲線や直線で囲まれた部分を、x軸の周りに1回転させてできる立体の体積Vを求めよ。
(1)y=2-x²、y=x
(2)y=sinx、y=sin2x(π/3≦x≦π)
チャプター:

0:00 オープニング
0:05 (1)解説
3:39 (2)解説
6:00 エンディング

単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線や直線で囲まれた部分を、x軸の周りに1回転させてできる立体の体積Vを求めよ。
(1)y=2-x²、y=x
(2)y=sinx、y=sin2x(π/3≦x≦π)
投稿日:2024.12.26

<関連動画>

福田の一夜漬け数学〜積分・面積と体積、媒介変数表示(1)〜受験編

アイキャッチ画像
単元: #平面上の曲線#積分とその応用#定積分#面積・体積・長さ・速度#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\theta-\sin\theta \\
y=1-\cos\theta
\end{array}
\right.
\end{eqnarray}(0 \leqq \theta \leqq 2\pi)$で表される曲線をCとする。

(1)Cとx軸で囲まれる部分の領域をDとする。Dの面積Sを求めよ。
(2)Dをx軸の周りに1回転してできる立体の体積Vを求めよ。

$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t^2+1 \\
y=2-t-t^2
\end{array}
\right.
\end{eqnarray}(-2 \leqq t \leqq 1)$で表される曲線とx軸で囲まれた面積を求めよ。
この動画を見る 

大学入試問題#496「よくある問題」  産業医科大学 改 (2016) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{3} (x-1)(x-2)^{\frac{1}{3}} dx$

出典:2016年産業医科大学 入試問題
この動画を見る 

大学入試問題#636「ミスなく」 東京電機大学(2020) #不定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#東京電機大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^3log(x^2+1) dx$

出典:2020年東京電機大学 入試問題
この動画を見る 

福田の数学〜千葉大学2023年第7問〜三角関数と定積分の最大Part1

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#積分とその応用#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{7}$ 関数
$f(x)$=$\displaystyle\left|\cos x-\sqrt5\sin x-\frac{3\sqrt2}{2}\right|$
について、以下の問いに答えよ。
(1)$f(x)$の最大値を求めよ。
(2)$\displaystyle\int_0^{2\pi}f(x)dx$ を求めよ。
(3)$S(t)$=$\displaystyle\int_t^{t+\frac{\pi}{3}}f(x)dx$ とおく。このとき$S(t)$の最大値を求めよ。
この動画を見る 

重積分⑩-5 #151【曲面の面積】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$D:x^2+y^2\leqq 1$
曲面$Z=xy$の$D$上における面積$S$を求めよ.
この動画を見る 
PAGE TOP