問題文全文(内容文):
座標平面上に3点О(0,0),A(0,4),B(8,0)がある。次の問いに答えよ。
(1) 3点A,B,Oを通る円Cの中心の座標を求めよ。
(2) 点Oを回転の中心として,円Cを反時計回りに60°回転させた円をC'とする。CとC'の共有点のうちOと異なる点の座標を求めよ。
座標平面上に3点О(0,0),A(0,4),B(8,0)がある。次の問いに答えよ。
(1) 3点A,B,Oを通る円Cの中心の座標を求めよ。
(2) 点Oを回転の中心として,円Cを反時計回りに60°回転させた円をC'とする。CとC'の共有点のうちOと異なる点の座標を求めよ。
チャプター:
0:00 オープニング
0:20 問題(1)の解き方
2:48 問題(2)の解き方:図形分析
5:21 問題(2)の解き方:計算作業
9:11 まとめ
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
座標平面上に3点О(0,0),A(0,4),B(8,0)がある。次の問いに答えよ。
(1) 3点A,B,Oを通る円Cの中心の座標を求めよ。
(2) 点Oを回転の中心として,円Cを反時計回りに60°回転させた円をC'とする。CとC'の共有点のうちOと異なる点の座標を求めよ。
座標平面上に3点О(0,0),A(0,4),B(8,0)がある。次の問いに答えよ。
(1) 3点A,B,Oを通る円Cの中心の座標を求めよ。
(2) 点Oを回転の中心として,円Cを反時計回りに60°回転させた円をC'とする。CとC'の共有点のうちOと異なる点の座標を求めよ。
投稿日:2022.02.24