【理数個別の過去問解説】2021年度 神奈川大学給費生入試 文系数学 第3問解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2021年度 神奈川大学給費生入試 文系数学 第3問解説

問題文全文(内容文):
座標平面上に3点О(0,0),A(0,4),B(8,0)がある。次の問いに答えよ。
(1) 3点A,B,Oを通る円Cの中心の座標を求めよ。
(2) 点Oを回転の中心として,円Cを反時計回りに60°回転させた円をC'とする。CとC'の共有点のうちOと異なる点の座標を求めよ。
チャプター:

0:00 オープニング
0:20 問題(1)の解き方
2:48 問題(2)の解き方:図形分析
5:21 問題(2)の解き方:計算作業
9:11 まとめ

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標平面上に3点О(0,0),A(0,4),B(8,0)がある。次の問いに答えよ。
(1) 3点A,B,Oを通る円Cの中心の座標を求めよ。
(2) 点Oを回転の中心として,円Cを反時計回りに60°回転させた円をC'とする。CとC'の共有点のうちOと異なる点の座標を求めよ。
投稿日:2022.02.24

<関連動画>

#岩手大学2024#定積分_34

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2\pi} (4\pi^2-t^2)\cos t dt$

出典:2024年岩手大学
この動画を見る 

王道の整数問題 産業医科大学2024 大学入試問題#927

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\dfrac{b^2}{a}+\dfrac{a}{b}=6$を満たす
自然数の組$(a,b)$のうち$a+b$の最小値を求めよ.

2024産業医科大学過去問題
この動画を見る 

福田の数学〜早稲田大学2023年理工学部第2問〜玉を取り出す確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数学的帰納法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 赤玉と黒玉が入っている袋の中から無作為に玉を1つ取り出し、取り出した玉を袋に戻した上で、取り出した玉と同じ色の玉をもう1つ袋に入れる操作を繰り返す。以下の問いに答えよ。
(1)初めに袋の中に赤玉が1個、黒玉が1個入っているとする。n回の操作を行ったとき、赤玉をちょうどk回取り出す確率を$P_n(k)$(k=0,1,...,n)とする。
$P_1(k)$と$P_2(k)$を求め、さらに$P_n(k)$を求めよ。
(2)初めに袋の中に赤玉がr個、黒玉がb個(r≧1, b≧1)入っているとする。n回の操作を行ったとき、k回目に赤玉が、それ以外ではすべて黒玉が取り出される確率$Q_n(k)$(k=1,2,..., n)とする。$Q_n(k)$はkによらないことを示せ。

2023早稲田大学理工学部過去問
この動画を見る 

大学入試問題#54 早稲田大学(2021) 積分の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$m,n:$正の整数
$f(x):n:x$次関数
$\displaystyle \int_{0}^{x}(x-t)^{m-1}f(t)dt=\{f(x)\}^m$を満たすとき$f(x)$を求めよ。

出典:2021年早稲田大学 入試問題
この動画を見る 

福田の数学〜空間の位置ベクトルの考え方〜明治大学2023年理工学部第1問(4)〜平面と直線の交点の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (4)四面体OABCにおいて、辺OAを1:3に内分する点をD、辺ABを1:2に内分する点をE、辺OCを1:2に内分する点をFとすると、
$\overrightarrow{DE}$=$\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハヒ\ \ }}\overrightarrow{OA}$+$\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}\overrightarrow{OB}$, $\overrightarrow{DF}$=$-\frac{\boxed{\ \ ホ\ \ }}{\boxed{\ \ マ\ \ }}\overrightarrow{OA}$+$\frac{\boxed{\ \ ミ\ \ }}{\boxed{\ \ ム\ \ }}\overrightarrow{OC}$
である。さらに、3点D,E,Fを通る平面と辺BCの交点をGとすると、
$\overrightarrow{DF}$=$\frac{\boxed{\ \ メ\ \ }}{\boxed{\ \ モ\ \ }}\overrightarrow{DE}$+$\frac{\boxed{\ \ ヤ\ \ }}{\boxed{\ \ ユ\ \ }}\overrightarrow{DF}$
である。したがって、$\overrightarrow{BG}$=$\frac{\boxed{\ \ ヨ\ \ }}{\boxed{\ \ ラ\ \ }}\overrightarrow{BC}$ となる。
この動画を見る 
PAGE TOP