重積分⑩-1【曲面の面積】(高専数学 微積II,数検1級1次解析対応) - 質問解決D.B.(データベース)

重積分⑩-1【曲面の面積】(高専数学 微積II,数検1級1次解析対応)

問題文全文(内容文):
$Z=\sqrt{a^2-x^2-y^2}$
$D:x^2+y^2=b^2$
(a>b>0)
D上の曲面Zの面積Sを求めよ。
単元: #数学検定・数学甲子園・数学オリンピック等#その他#数学検定#数学検定1級#その他#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$Z=\sqrt{a^2-x^2-y^2}$
$D:x^2+y^2=b^2$
(a>b>0)
D上の曲面Zの面積Sを求めよ。
投稿日:2020.11.18

<関連動画>

20年5月数学検定1級1次試験(三角関数)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$
$\tan(2Arc\tan\dfrac{1}{3}+Arc\tan\dfrac{1}{12})$
$Arc\tan a=\tan^{-1}a=t\Leftrightarrow t=\tan a$
$\tan(\tan^{-1}a)=a$
$\tan(\alpha+\beta)=\dfrac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}$

20年5月数学検定1級1次試験(三角関数)過去問
この動画を見る 

練習問題38 数検1級1次 高専数学 積分順序の変更

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#不定積分・定積分#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a\gt 0$とする.
$\displaystyle \int_{0}^{a} dx \displaystyle \int_{0}^{x^2} f(x,y)dy$
の積分順序の変更をせよ.
この動画を見る 

#64 #数検1級1次過去問 #高次方程式

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$4$次方程式
$x^4-4x-1=0$について、次の問いに答えよ。
1.上の方程式の実数解を求めよ。
2.上の方程式の虚数解を求めよ

出典:数検1級1次過去問
この動画を見る 

#26 数検1級1次 過去問 複雑な方程式

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#数と式#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y+z=6 \\
x^3+y^3+z^3=36 \\
xyz=6
\end{array}
\right.
\end{eqnarray}$
において、$x \gt y \gt z$を満たす解を求めよ。
この動画を見る 

微分方程式①【微分方程式の最初】(高専数学、数検1級解析)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
微分方程式
x:tの関数
$\frac{d^nx}{dt^n}+3\frac{d^3x}{dt^3}+2\frac{dx}{dt}+1=0$
(n>3)のとき
n階微分方程式
$\frac{dx}{dt}=-k(x-1):1階微分方程式\cdots*$
$x=(c-1)e^{-kt}+1$
*の解である

$左辺=\frac{dx}{dt}=-k(c-1)e^{-kt}$
$右辺=-k((c-1)e^{-kt}+1-1)$
$=-k(c-1)e^{-kt}$
∴左辺=右辺
c≠0
(1)$x=\frac{c}{t}$が解となる
微分方程式を求めよ
(2)曲線$x=ce^{2t}$が解曲線となる微分方程式を求めよ。
この動画を見る 
PAGE TOP