【高校数学】数Ⅲ-90 微分とは? - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-90 微分とは?

問題文全文(内容文):
関数$f(x)$の①を求めることを微分という。

導関数の定義に従って、次の関数を微分せよ。

②$f(x)=\dfrac{2}{x}$

③$f(x)=\sqrt{x+2}$
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
関数$f(x)$の①を求めることを微分という。

導関数の定義に従って、次の関数を微分せよ。

②$f(x)=\dfrac{2}{x}$

③$f(x)=\sqrt{x+2}$
投稿日:2018.05.01

<関連動画>

#高専_3#定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} (e^x-e^{-x})^2(e^x+e^{-x}) dx$
この動画を見る 

岩手大 複素数 ド・モアブルの定理 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z^4-z^3+z^2-z+1=0$のすべての解を極形式で表せ
$\cos 36^{ \circ }$を求めよ

出典:2005年岩手大学 過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第6問〜領域における最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{6}}$ ある国の有識者会議が、経済活性化に資する公共サービスの$供給量x$と、医療・
公衆衛生に関する公共サービスの$供給量y$の組み合わせの検討を行っている。$供給量
(x,y)$は、予算やマンパワー、既存の法律など、さまざまな要因により、その実現可能性
に制約を受け、次の不等式を満たすものとする。
$\left\{\begin{array}{1}
2x+5y \leqq 405 \ldots(1)\\
x^2+75y \leqq 6075 \ldots(2)\\
x \geqq 0 \ldots(3)\\
y \geqq 0 \ldots(4)\\
\end{array}\right.$

$供給量(x,y)$を$x軸$と$y軸$の$2次元座標$で表すと、実現可能な供給量の組合せ$(x,y)$の値域は、$0 \leqq x \leqq \boxed{\ \ アイ\ \ }$の範囲で$(1)$と$(4)$を満たす$(x,y)$の部分の領域と、
$\boxed{\ \ アイ\ \ } \leqq x \leqq \sqrt{\boxed{\ \ オカ\ \ }}$の範囲で$(2)$と$(4)$を満たす$(x,y)$の部分の領域の$2$つ
からなることがわかる。
いま、有識者会議の目標が$xy$の最大化であるとすると、供給量の組合せを
$(x,y)=(\boxed{\ \ キク\ \ },\boxed{\ \ ケコ\ \ })$とする結論を得る。
次に、情勢の変化に伴って、上記の$(1),(2),(3),(4)$に新たな不等式
$x+y \leqq 93  \ldots(5)$
が加わったとすると、実現可能な$(x,y)$の領域は、$0 \leqq x \leqq \boxed{\ \ サシ\ \ }$の範囲で
$(1)と(4)$を満たす$(x,y)$の部分の領域と、$\boxed{\ \ サシ\ \ } \leqq x \leqq \boxed{\ \ スセ\ \ }$の範囲で
$(5)と(4)$を満たす$(x,y)$の部分の領域と、$\boxed{\ \ スセ\ \ } \leqq x \leqq \boxed{\ \ ウエ\ \ }\sqrt{\boxed{\ \ オカ\ \ }}$の範囲で
$(2)と(4)$を満たす$(x,y)$の部分の領域の$3つ$に分けることができる。
また、政府の方針にそって、有識者会議の目標が$x^2y$の最大化に変更されたとすると、
供給量の組合せを
$(x,y)=(\boxed{\ \ ソタ\ \ },\boxed{\ \ チツ\ \ })$
とする結論を導くことになる。

2021慶應義塾大学環境情報学部過去問
この動画を見る 

福田の数学〜一橋大学2025文系第2問〜円と円の交点を通る直線に対称な点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

座標平面上に原点を中心とす半径$3$の円$C_1$がある。

また、直線$x=2$上の点$P$を中心とする半径$1$の円を

$C_2$とする。

(1)$C_1$と$C_2$が共有点を$2$つ持つような$P$の

$y$座標の範囲を求めよ。

(2)$C_1$と$C_2$が共有点を$2$つ持つとき、

その$2$つの共有点を通る直線を$\ell$とする。

$\ell$に関して$P$と対称な位置にある点を$Q$とする。

ただし、$P$が$\ell$上にあるときは$Q=P$とする。

$P$の$y$座標が(1)で求めた範囲を動くとき、

点$Q$の軌跡を求め、図示せよ。

$2025$年一橋大学文系過去問題
この動画を見る 

【短時間でマスター!!】円の方程式(中心と半径)の求め方を解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学2B
円の方程式
中心と半径の求め方について解説します。

次の方程式はどのような図形を表すか。
①$x^2+y^2+2y-3=0$
②$x^2+y^2+4x-6y-4=0$
この動画を見る 
PAGE TOP