福田の入試問題解説〜北海道大学2022年理系第3問〜指数不等式の領域が表す面積の最小 - 質問解決D.B.(データベース)

福田の入試問題解説〜北海道大学2022年理系第3問〜指数不等式の領域が表す面積の最小

問題文全文(内容文):
以下の問いに答えよ。
(1)連立不等式$x \geqq 2, 2^x \leqq x^y \leqq x^2$の表す領域をxy平面上に図示せよ。
ただし、自然対数の底eが$2 \lt e \lt 3$を満たすことを用いてよい。
(2)$a \gt 0$に対して、連立不等式$2 \leqq x \leqq 6, (x^y-2^x)(x^a-x^y) \geqq 0$
の表すxy平面上の領域の面積をS(a)とする。
$S(a)$を最小にするaの値を求めよ。

2022北海道大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
(1)連立不等式$x \geqq 2, 2^x \leqq x^y \leqq x^2$の表す領域をxy平面上に図示せよ。
ただし、自然対数の底eが$2 \lt e \lt 3$を満たすことを用いてよい。
(2)$a \gt 0$に対して、連立不等式$2 \leqq x \leqq 6, (x^y-2^x)(x^a-x^y) \geqq 0$
の表すxy平面上の領域の面積をS(a)とする。
$S(a)$を最小にするaの値を求めよ。

2022北海道大学理系過去問
投稿日:2022.03.11

<関連動画>

名古屋大 微分 複雑な方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$f(x)=x^{-2}2^x$ $(x \neq 0)$
$f'(x) \gt 0$となる条件を求めよ

(2)
$2^x=x^2$実数解の個数を求めよ

(3)
$2^x=x^2$の有理数解をすべて求めよ

出典:2015年名古屋大学 過去問
この動画を見る 

光文社新書「中学の知識でオイラーの公式がわかる」Vol.7積の微分の公式証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#積分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
積の微分の公式証明解説動画です
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第4問〜極方程式と曲線で囲まれた面積

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#媒介変数表示と極座標#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$座標平面の原点Oを極、x軸の正の部分を始線とする極座標$(r,\ \theta)$を考える。
$k \gt 0$として、極方程式
$r(\sqrt{\cos\theta}+\sqrt{\sin\theta})^2=k  (0 \leqq \theta \leqq \frac{\pi}{2})$
で表される曲線を$C(k)$とする。曲線$C(k)$上の点を直交座標$(x,\ y)$で表せばxの
とりうる値の範囲は、$\boxed{\ \ ア\ \ } \leqq x \leqq \boxed{\ \ イ\ \ }$である。
曲線$C(k)$とx軸、y軸で囲まれた図形の面積を$S(k)$とおけば、$S(k)=\boxed{\ \ ウ\ \ }$
でなる。直交座標が$(\frac{k}{4},\ \frac{k}{4})$である曲線$C(k)$上の点Aにおける曲線$C(k)$の接線l
の方程式は、$y=\boxed{\ \ エ\ \ }$となる。曲線$C(k)$と直線l、およびx軸で囲まれた
図形の面積を$T(k)$とおけば、$S(k)=\boxed{\ \ オ\ \ }\ T(k)$が成り立つ。$0 \lt m \lt n$を
満たす実数$m,n$に対して、$S(n)-S(m)$が$T(n)$と等しくなるのは、

$\frac{m^2}{n^2}=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ \ \ }}$のときである。

$\boxed{\ \ イ\ \ }\ 、\boxed{\ \ ウ\ \ }$の解答群

$⓪\sqrt k  ①k  ②k^2  ③\frac{\sqrt 2}{2}  ④\frac{\sqrt 2}{3}$
$⑤\frac{k}{2}  ⑥\frac{k}{3}  ⑦\frac{k^2}{4}  ⑧\frac{k^2}{5}  ⑨\frac{k^2}{6}$

$\boxed{\ \ エ\ \ }$の解答群

$⓪x+\frac{k}{2}  ①x+\frac{k}{4}  ②-x+\frac{k}{2}  ③-x+\frac{k}{4}  ④2x-\frac{k}{2}$
$⑤2x-\frac{k}{4}  ⑥2x-\frac{3k}{4}  ⑦-2x+\frac{k}{2}  ⑧-2x+\frac{k}{4}  ⑨-2x+\frac{3k}{4}$

2021明治大学全統過去問
この動画を見る 

福田のおもしろ数学169〜log x/xの極限

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\lim_{x \to \infty}\frac{\log x}{x}$=0 を証明せよ。
この動画を見る 

福田のわかった数学〜高校3年生理系063〜微分(8)多重因子(2)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 微分(8) 多重因子(2)
$f(x)=ax^4+bx^3+cx^2+dx+e$ を
$(x-1)^3$で割った余りを$f(1),f'(1),f''(1)$を
用いて表せ。
この動画を見る 
PAGE TOP